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Outline

1. Quick introduction to WDRO
2. Regularizing WDRO
3. “Robust” generalization properties with WDRO
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Robust ML

We want ML models not to fail when applied in the real-world
Shifts in distribution:

“panda” “gibbon™
57.7% confidence 99.3% confidence

"Snow Road" by Yuichiro Haga, under CC BY 2.0, creativecommons.org/licenses/by/2.0/?ref=openverse. "Pioneertown Road - California" by ChrisGoldNY, under CC BY-NC 2.0,

creativecommons.org/licenses/by-nc/2.0/?ref=openverse. 3/23



Learning framework: from ERM to DRO

» Training data &1, .. ., £, ~ Pirain, Where Pi.i» unknown, belgonging to = C R?
e.g., & = (xi, yi) where x; input, y; label/target

» Obijective fy : = — R, parameterized by 6
e.g., logistic regression f;(€) = f5((x, y)) = log(1 + e ¥

» Empirical Risk Minimization (ERM)

min > (&)
i=1
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Learning framework: from ERM to DRO

» Training data &1, .. ., £, ~ Pirain, Where Pi.i» unknown, belgonging to = C R?
e.g., & = (xi, yi) where x; input, y; label/target

» Obijective fy : = — R, parameterized by 6
e.g., logistic regression f;(€) = f5((x, y)) = log(1 + e ¥

» Empirical Risk Minimization (ERM)

n

1S ) 1<
min— > (&) =B, f(€) with = =6
i=1 i=1

— Take into account uncertainty in the training data
» Distributionally Robust Optimization (DRO):

min sup Eewo[fa(€)]  where U(P,) ambiguity set
QeU(Pn)
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Distributionally Robust Optimization

min sup Eewo[fe(§)]
QeU(Pp)

Choice of ambiguity set 2/(P,)
> u(ﬁn) defined by moment constraints (Delage and Ye, 2010).

» Through distance/divergence
UP,) ={Q : dist(Q, P) < p}
with e.g., KL, MMD...
» This talk: Wasserstein distance
UP) ={Q: Wo(Q. Py) < p}

Popular recently: nice theoretical/practical properties (Mohajerin Esfahani and Kuhn, 2018)
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Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for P, Q probability distributions on =,

WP, Q) = inf {Eeoyonll€ — CIP: m € P(ZD), m1 = P = Q)7

Transport plan between two probabilities on R:

“Transport a pile of sand onto another one:

(&, ¢) = mass of sand taken from P at £ to put

at ¢ for Q"

A e

-8 -6 -4 -2 0 2 4 6 8
u
By Lambdabadger, CC BY-SA 4.0,

commons.wikimedia.org/w/index.php?curid=64872543
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Wasserstein distributionally robust optimization (WDRO)
p-Wasserstein distance: for P, Q probability distributions on =,

Wo(P, Q) = inf {Egecronllé — CI7 - T € P(E2), 11 = P> = Q)7

WDRO objective:

sup  Eeoo[fe(€)]
Q:Wp(FP,.Q)<p

Dual: fundamental both in theory and practice

inf Ao’ +E igg{fs(C) — Mg —<¢IIP}
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Wasserstein distributionally robust optimization (WDRO)
p-Wasserstein distance: for P, Q probability distributions on =,

Wo(P, Q) = inf {Eecronllé — CII° : m € P(Z2). m = Py = Q)

WDRO objective:

sup  Eeoo[fe(€)]
Q:Wp(FP,.Q)<p

Dual: fundamental both in theory and practice
inf Ao +Ec p |sup{fe(¢) — M€ —(II°}
A20 ¢e=

— For structured f, dual simplifies (solvable as min-max, recall S. Wright's talk)
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lllustration: logistic regression and distributional shift

E=(x,y)withy e -1, +1

Training:
X|Y = —1~ N(u_,5)
X|Y =+1~ N(us, 1)

fo((x,y)) = log (]_ + e-.\’(&x})

Testing:

Standard logistic regression
Test accuracy: 81%

WDRO Logistic regression
Test accuracy: 91%

X|Y = —1~ N(p-, 1)
X|Y = +1~ N(p+,5)

000
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Regularizing WDRO
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Regularization in optimal transport

inf{ Exc meP(E)m =P m=Q%%,
<~

linear
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Regularization in optimal transport

1
inf ¢ Erc + TEPE) mM=Pm=Qp7?,
g =
linear strongly convex

Most popular: entropic regularization

log ga25dP if P
—eki(mipe Q)= |1 PP Q@ T < PEq
+o00 otherwise

» Can be computed efficiently with the Sinkhorn algorithm
— Popularized optimal transport in the ML community (Cuturi, 2013)
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Regularization in optimal transport

1
inf ¢ Erc + TEPE) mM=Pm=Qp7?,
g =
linear strongly convex

Most popular: entropic regularization

log ga25dP if P
—eki(mipe Q)= |1 PP Q@ T < PEq
+o00 otherwise

» Can be computed efficiently with the Sinkhorn algorithm
— Popularized optimal transport in the ML community (Cuturi, 2013)

» Nice theoretical properties :

» Provably approximates the unregularized Wasserstein distance (Genevay, Chizat, et al., 2019)
P Resulting distance is smooth (Feydy et al., 2019)
» Good statistical properties (Genevay, Chizat, et al., 2019)
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Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of 6

non-smooth
sup{ Eofi :QePE), Wo(P.Q)<p } = inf Ap"+Eg~p[sug{fe(({)—%IE—CII”}] :
N~~~ N——— A20 ¢e=

linear function non-smooth constraint
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Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of 6

non-smooth
sup{ Eofi :QePE), Wo(P.Q)<p } = inf Ap"+Eg~p[sug{fe(({)—%IE—CII”}] :
N~~~ N——— A20 ¢e=

linear function non-smooth constraint

Reformulation: using the definition of W, (P, Q)

sup { Enfy :meP(E’),m=P, Eeo~rllE =ClIIP <o
——

linear function linear constraint

10/23



Regularizing the WDRO objective

Primal:

sup Enr,fo CTE 77(52), m =P, Egonrlll€ — ¢lI] <p
N—_— ————

linear function linear function
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Regularizing the WDRO objective

Primal: where R, S : M(Z?) — RU {400}

sup En,fy — R(r) :meP(E?),m=P, EeonlllE =CIPT+  S(m) <p
N— ——— N
linear function (strongly) convex linear function (strongly) convex
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Regularizing the WDRO objective

Primal: where R, S : M(Z?) — RU {400}
sup{ Enfy — i€ P(E),m =P, Egopenlllé — CIP] + <p
N~ N N~
linear function (strongly) convex linear function (strongly) convex
Dual:
inf inf Ao+ Egup|sup () — A€ —C|IP — +
A>0 ce=

Idea of proof: on = compact to use duality C(Z%)* = M(Z?)

» Lagrangian duality (Peypouquet, 2015)
» Fenchel duality (Bot et al., 2009)
» Exchange sup / E[-] (Rockafellar and Wets, 1998)
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Entropic regularization

Corollary (A., lutzeler, Malick, 2022)
With S = 0, R = e KL(-|m0) s.t. (o)1 = P

F(Q-AlE=lIP
sup Er,f — eKL(7|m0) = inf Ap” + eE¢p log (E(wo(-\s)ef)
TEPP(Z2)E¢ ¢)rlllE—CIPI<P A0

To compare with:

b Bof = nf A+ Beoe sup(F(Q) ~ Al ~ ¢IP}
QEP(Z):W,(P.Q)<p 220 ez

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)
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Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since

71 = P and = TKP®
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Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since
71 = P and = T<KP®
WDRO: not fixed! Choose, with (1)1 = P,

=l

ﬂo(dg,df) X P(d&) 14&5 e 7 d{
l=<IP

Wo(ddf) XX II-(EE e 7
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Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since
71 = P and = T<KP®
WDRO: not fixed! Choose, with (1)1 = P,

=l

ﬂo(dg,df) X P(d&) 14&5 e 7 dC
l=<IP

Wo(ddf) XX ﬂcgz e 7

= Enforces m < Lebesgue

13/23



Approximation bound
Inspired by Genevay, Chizat, et al. (2019) for OT, bound the approximation error between:

sup {Enr,f} (WDRO)
TEP(Z2):m =P E(¢ ¢)ur[lI€—CIIPI<P
sup {Enr,f — eKL(m|m0)} (e-WDRO)

TEP(Z2):m =P .E¢ c)nr[l€—CIPI<p

Proposition (A., lutzeler, Malick, 2022)
_le=¢iP

Under regularity assumptions on f and = C R? compact, with, To(d€, d¢) oc P(d€) Leez e @ d¢
then,

0 < val(WDRO) — val(e-WDRO) < O( dlog 1)
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Approximation bound
Inspired by Genevay, Chizat, et al. (2019) for OT, bound the approximation error between:

sup {Enr,f} (WDRO)
TEP(Z2):m =P E(¢ ¢)ur[lI€—CIIPI<P
sup {Enr,f — eKL(m|m0)} (e-WDRO)

TEP(Z2):m =P .E¢ c)nr[l€—CIPI<p

Proposition (A., lutzeler, Malick, 2022)
_ lle=ap

Under regularity assumptions on f and = C R? compact, with, To(d€, d¢) oc P(d€) Leez e @ d¢
then,

0 < val(WDRO) — val(e-WDRO) < O( dlog 1)

Conclusion of the first part: regularize the WDRO objective
» Smooth and still tractable dual
» Provably close to original
» Interesting in practice (to be done)
» Interesting in theory (now in the second part!)
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“Robust” generalization properties of WDRO

15/23



Statistical properties of WDRO
With 7, = 1577 5 where & ~ Py, iid. in = C R?

n

» Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if p > o(n*%), with high probability,

sup  Eeo[f(§)] > Eenr,,,f(€)
Q:Wp(P1,Q)<p

can compute and optimize! cannot access
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Statistical properties of WDRO
With 7, = 1577 5 where & ~ Py, iid. in = C R?

n

» Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if p > o(n*%), with high probability,

sup  Eeo[f(§)] > Eenr,,,f(€)
Q:Wp(P1,Q)<p

can compute and optimize! cannot access

» Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability
Wo( P, Paan) < O(n77)

— But exponential dependance in d...

» To do better: treat the WDRO objective as a whole
e.g., (An and Gao, 2021) : guarantees with p o nz

» But we can do even better, especially with regularization!
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What we would like

Define,
Fo(f.P)= sup {Eqr, f — eKL(|m0)}
TeP(Z2):m1=P E¢ oyurIE—CIPI<p

and recall P, = L1 377 6¢, where & ~ Peain

Ideal result

With high probability, for all f € F,
F;(f, lsn) Z F;- (f, Ptrain)

with ,€>0

» Optimal requirement on radius when n — oo (Blanchet, Murthy, and Si, 2021)
» Guarantee on the WDRO objective and p can be non-vanishing
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Nice consequences of ideal result, e.g. case e = 0

[A:’n = %Z/n:légi with 5, ~ Ptrain

1. Generalization bound:

with high probability,  Fp(f, Py) > Foup(f, Piain) > Ep, f
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Nice consequences of ideal result, e.g. case e = 0

'E)n = %Z/n:léﬁi with 5/ ~ Ptrain
1. Generalization bound:
with high probability,  F,(f, Py) > Fop,(f, Prain) > Ep,

2. Distribution shift: Py, # Prest i.6c Wa(Prrain, Prest) > 0

with high probability,  F,(f, Pa) > Fppn(F, Piran)
> Ep.. f
When P — Pn Z WZ(/Dtm/ny /D:‘r,,\:‘)
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Can we have this ideal result?

Yes!

Existing works:
» In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
» With error terms and obligatory vanishing o (An and Gao, 2021)
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Can we have this ideal result?

Yes!

Existing works:
» In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
» With error terms and obligatory vanishing o (An and Gao, 2021)

Our work: version of the ideal result (A., lutzeler, Malick, 2022)
» = compactand p =2
» ¢ > 0 (at least today)
» + assumptions about F, etc...

Idea of proof:
1. Why we need to lower bound X
2. How we lower bound X

19/23



Idea of proof 1: Why we need to lower bound A
Recall, for e > 0,
Fi(f. P) = sup {Ex, f — eKL(m|mo)}
TEP(22)im =P B¢ ¢)or [I€—CI2] <o

_ ) FO=MECI2
= inf A" +Eep, (log| Ecmiy | €

~ Lemma
For p > 0, € > 0 assume that there is some )\(p) > 0 such that, with high probability,

e, . A~ . 5 FO=ME=¢I?
Vf e F, Fp(f, Pn) = Aé&fp) AP~ + EgNﬁ" log E¢mo(1e) | € €
then we get the ideal result: with high probability, for all f € F,
F;(f, lbn) 2 Fpefpn(f, lDtraln)

with

= (557)

= Need a lower bound \(p) on the optimal dual multiplier for P,

20/23



Idea of proof 2: How we lower bound X

—— General lower bound

—— Lower bound when p — 0
Recall: A dual multiplier for

Wa(Pn, Q) < p

When p large enough, the constraint
becomes inactive and A = 0

A(p)
@

X Pc—p

Jo

21/23




Ideal theorem

_ Theorem (informal) (A., lutzeler, Malick, 2022)

For & < p, with

then, with high probability,
YfeF, Fi(f Py)>F; , (f Puain)
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Ideal theorem

_ Theorem (informal) (A., lutzeler, Malick, 2022)
For & < p, with

then, with high probability,

YfeF, Fi(f Py)>F; , (f Puain)

Remark: extends to unregularized (¢ = 0) with stronger assumptions on F

22/23



Conclusion

Main takeaways:
» Present regularization for WDRO: smooth dual and still provably close to the original
» New generalization bounds for WDRO, especially for regularized WDRO
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Conclusion

Main takeaways:

» Present regularization for WDRO: smooth dual and still provably close to the original
» New generalization bounds for WDRO, especially for regularized WDRO

Future work:
» Wrap up the paper ®
» Generalize the current generalization bounds (non-compact, p # 2, other regularizations...)
» Efficient and scalable computational methods

Azizian, lutzeler, Malick (2022). “Regularization for Wasserstein Distributionally Robust Optimization”.
arXiv:2205.08826, submitted.

Azizian, lutzeler, Malick (2022). “Robust Generalization Bounds for Wasserstein Distributionally Robust
Optimization”. to be submitted.
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WDRO can be tractable

Most methods rely on the dual of the WDRO objective:

sup Eofs = inf Ao + Eewp |sup{f(¢) — A€ — C[} .
QEP(Z):WH(P.Q)<p A0 ¢e=

> With [|¢ — ¢[|? = ||€ — ¢|| <= 2 = 1 works well with structured (convex, Lipschitz) f,.

P Logistic regression (Shafieezadeh Abadeh et al., 2015; Li, Huang, et al., 2019; Yu et al., 2021).
» ¢! linear regression and its derivatives (R. Chen and Paschalidis, 2018).
» SVM (Shafieezadeh-Abadeh et al., 2019; Li, C. Chen, et al., 2020).

> With ||¢ — ¢||” = ||¢ — ¢||> <= 2 = 2: strongly convex, can be combined with the structure of
the dual for efficient algorithms (Blanchet, Murthy, and Zhang, 2020; Sinha et al., 2018).
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Solving the WDRO problem for unstructured objective
Gao and Kleywegt (2016). A
Robust approximation of the WDRO,for P = P, = 1 37 §¢,, is given by,

min sup{ ZZ (6.¢.) :%sz&,cw)gp, c,.jez}.

i=1 j=1 i=1 j=1
Blanchet, Murthy, and Zhang (2020).
Recall the dual, for 2-Wasserstein,

2
(o860 Eeep sup £(0.€) = A€ — I

If fp is convex, they show that \* ~
Sinha et al. (2018).
Fix the dual multiplier A and consider the penalized problem,

inf Ao + Eepsup £(6,¢) — All€ — ¢|°.
0co Ce=

ﬁ so that, for p small enough, one can restricts to large .

Kwon et al. (2020).
Following works that link WDRO and regularization, for p-Wasserstein, % + % = 1 and p large enough.

1
sup Eqfy ~ Epfa+ p(Ep||Ve fo]|9)7,
QEP(2):W,(P.Q)<p p=0

7/19



General duality theorem

~ Theorem
For (i) = c R? closed,

(i) c: =2 = RU{+oc} Isc which is zero on the diagonal,

(iii) f: = — R usc belonging to L'(P),

sup Eof = inf Ap+ Eep [sup{f(¢) — A€ — |7} .
QEP(Z):Ws(P.Q)<p A0 Ce=
Sketch of proof
Step 1: Lagrangian duality
sup Eof = sup{Er,f : m € P(Z*), m = P, Eopur[I€ — CI°] < 0}

QEP(Z):WL(P,.Q)<p
= inf X + sup{E(e.¢)orf(¢) = M€ = C|* - m € P(Z7), m = P}

Step 2: exchange sup and E using Rockafellar and Wets (1998, Thm. 14.60),
sup{E¢.c)orf(C) = AlI€ = C[* : m € P(Z?), m1 = P} = sup {Eepf(((€)) — Ac(€,¢(€)) : ¢: = — = meas.}

= Ecep sup{f(Q) = M€~ CI} | -
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How to solve the Wasserstein distributionally robust optimization (WDRO) problem ?
1. Inspired by Genevay, Cuturi, et al. (2016), solve, when P = £ 37 6, ,

1 < £ — f(O-2e(€1.0) -3,
inf = g - Ee¢mo(- e € —1].
€0)>0,0€R" N _X;J/ + n Zl C~mol1é:)
1= 1=

— But too much variance!
2. Instead, use,

_ £Q-AE=CI?
ec'a'szo Ap + eEeplog | Ecomg(ye © :

(a) Stochastic approximation: compute the gradients with MCMC

f(QO-lE=CII? (©- Aus <2
E E¢amo(1e) Vo fi({)e € and o—E E¢mye)ll€ — C||2
P QI p = Hevp O E—I2
Eiom(l® ¢ Egomo(l)® °
(b) Biased stochastic minimization:
. 12 £(¢)-Ael€6)
g T P > e

— Biasin O *% with m the number of MC samples.
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Optimization illustration: £2 linear regression

==RxR, O=R’, filxy)= 50— 08 I€-CF =3¢ CIB.

Then, (unregularized) WDRO ¢ linear regression,

1 2
inf su Eofy = inf = 2p(1 + 2) +4/E pl(Y — (X, 2> .
6o Baf = int 5 (205 108) + Ecnerl(Y = (X0

=Fp(6)
Unregularized WDRO 3 Unregularized WDRO
Regularized SA WDRO ] Regularized SA WDRO
134 Regularized biased WDRO Regularized biased WDRO
1071 o
= 1024
— X E
& 12~ © E
=g | ]
< ]
w < 4
1073 o
11— )
1074 o
T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Iterations

Iterations n'=1000,d =20, p=0.1,¢ =0.01and o = 0.1. 10/19



Learning illustration: logistic regression

Training data Testing data. Logistic Regression

WDRO Logistic Regression Entropic WDRO Logistc Regression
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Sketch of proof of approximation result
» Crux of the proof:

sup {Eref = Eeon[li€ - CI7T} - sup {En, f — eKL(m|T
TEP(Z2):m=P.E(¢ ¢c)ur [IIE=CI2] <0 TEP(Z2)my =P, E(¢ ¢)or [16-CI12] <o
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TEP(Z2):m=P.E(¢ ¢c)ur [IIE=CI2] <0 TEP(Z2)my =P, E(¢ ¢)or [16-CI12] <o

» For this, at fixed », bound

sup  {Bnf— (S +0) EeounlllE =P )= sup  {Bnf = cKL(mImo) = AEeopon[IE — CIP

TEP(Z2):m =P TEP(Z2):m =P
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Sketch of proof of approximation result

» Crux of the proof:

sup {Eref = Eeon[li€ - CI7T} - sup {Bx, f — eKL(|mc
TEP(Z2):m =P, E(¢ oyur [16—CI12] <o TEP(Z2):m=P.E(g ¢)or[I6—CI2] <o

» For this, at fixed », bound

sup  {Baf = (G +0) BeosllE - AT }=  sup  {Bnf = cki(mim) Bl ~ CIF
TEP(Z2):m =P

neP(Z2):m =P

» Inspired by Carlier et al. (2017), introduce
7 (dg, d() x Lemer o), )Wo(df,dC),

where ¢*(€) € argmax..={f({) — (5 + ) [I€ — ¢||”} and A optimized eventually.
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Asymptotic regime: n — o
To have the optimal rate, we need
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Asymptotic regime: n — o
To have the optimal rate, we need

Ap) 2 % when p — 0
Idea: use the approximation when A — +oo0, € — 0,
supee={f(¢) = M€ = CIIP} = F(€) + 5 IV F(€)I13 ife=0

o(f. & N g)= FO-AlE—CI? . .
( ) {log (]ngo(.me € ) ~ f(é) + Z(Xi%) 1A% f(&)”g - 7d Iog(% + U%) ife >0.
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Asymptotic regime: n — o
To have the optimal rate, we need

Ap) 2 % when p — 0
Idea: use the approximation when A — +oo0, € — 0,
supce={7(C) = AlIE = CIIP} = (&) + 5= IV F(E)I13 ife=0
WFENE) =1 (EM(K)GW) ~ )+ oy IV A - Flog(: + 2) e >o0.
~ Lemma
When

1
< > Rp— =
p < Q(1), p_O(ﬁ),ande Oore o p,

then, with high probability,
€ > . 2 .
VfeF, F,(f,Pn)= ngp) Ap +IE€NPH[¢>(f, &Xe).

with
o) 2

D=

Without the concentration and for € = 0, see Gao, X. Chen, et al. (2020), An and Gao (2021), and Blanchet, Murthy, and Si (2021)... 13/19



Adversarial regime: p not small, e > 0

_ Regularized case e > 0

When
1

1 _1
— )| << — R > 6
O(W)_p_pc(f) O(ﬁ)’ pe(f) = 0(n7F),

then, with high probability,

£ An — inf 2 E., » f , )
VieF, Fi(f,Py) Aé&(p) Ap” + 5~Pn[¢( &A )]

with
2o ze(240 -p-0( 1))
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Adversarial regime: p not small, e =0

Harder: need to study what happens

_ Unregularized case
When

and,
arg max f are all smooth,
f € F decrease at least uniformly quadratically near their maximums,

then, with high probability,
Ore B Y _ 2 .
vfeF, F(f.Py)= Ag{p) A" +E_p, [6(F. € X, 0)],
with
Mp) Z pe(F) = p°
such that
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Adversarial regime: p not small, e =0
Harder: need to study what happens

_ Unregularized case
When

and,
arg max f are all smooth,
f € F decrease at least uniformly quadratically near their maximums,

then, with high probability,
Ore B Y _ 2 .
vfeF, F)f P,)= Jnf A'+ B, [@(F. € X, 0)],

with
NOPTAG RS

such that

Example: (£) = £((6, &)) with 8 € © compact which does not include 0.
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Conclusion

» We studied general regularization for WDRO, taking inspiration from OT.
» Future work:

» Compare experimentally to other approaches for unstrctured problems.

P Investigate further the computational and statistical properties of the regularized formulation (strong
convexity? out-of-sample guarantees?)

» Design cheaper approaches for unbiased resolution.

» Handle labels by uniting the two parts of this work.
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Fundamental Statistical Guarantees (Mohajerin Esfahani and Kuhn, 2018)

With P = P, = L 377 6¢, with & ~ P,
> P=P, =137 6 withé ~ P
> o, Z v

Then, with high probability,

WQ(ﬁn, /Dru:sc:) S Pn and ng‘p : fg(g) S sup E§~Q[fe($)]
QEP(Z):Wa(Pn.Q)<pn

17/19



Fundamental Statistical Guarantees (Mohajerin Esfahani and Kuhn, 2018)

With P = P, = L 377 5¢, with & ~
> P=P,=13" 5 withé ~
> 0 2 n~te

Then, with high probability,

Wa(Pn, )<pn and Eeor  fo(§) < sup Eevo[fo(€)]
QEP(Z):Wa(Pn,Q)<pn

= Instead of “Probably Approximately Correct” bounds, “Probably Correct” upper bounds
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General regularized duality

Inspired by Paty and Cuturi (2020), we study general regularization on =

_ Proposition

with convex duality.

If, () cec(z?),fecC(=)on= ,
(i) R: M(Z?) = RU {+oo} convex proper weakly-x Isc,
(iii) the primal is strictly feasible,

then,

sup Er,f—R(m) = inf |nf >\p—|—IE5NP sup £(¢) -
weP(EQ);m:P,]E(“)w[ng_guz]gp A>0 peC(= ez

where R is the conjugate,

¢ = SUPrec(x) (T, @) — R(7) .

o {C(Ez) — RU {400}

Al =¢IIP = o(& O +R

—
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Existing work

Consider P, = L5718, with & ~ Piraip and define

» Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need

fOI’,OZ il Fp(fv"s”) 2]E'Dtra/nf'
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Existing work

Consider P, = L5718, with & ~ Piraip and define
» Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need

fOI’,OZ il Fp(fv"s”) 2]E'Dtra/nf'

» First “dimension-independant” guarantees by Lee and Raginsky (2018) but non-interpretable or
void when p — 0.

» Asymptotic analysis (Blanchet, Murthy, and Si, 2021): optimal for generalization when
n— oo.

» Non-asymptotic bounds with optimal by Shafieezadeh-Abadeh et al. (2019) for linear
models, convex Lipschitz loss and unconstrained =.

» An and Gao (2021): bounds for general objectives with optimal but p necessarily
vanishing and with error terms.
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