What is the Long-Run Distribution of SGD? A Large Deviation Analysis

October 2024

W. Azizian, F. Iutzeler, J. Malick, P. Mertikopoulos

Problem of interest

For $f : \mathbb{R}^d \to \mathbb{R}$ nonconvex (smooth)

 $\underset{x \in \mathbb{R}^d}{\operatorname{minimize}} f(x)$

Stochastic Gradient Descent (SGD): with *constant* step-size $\eta > 0$

$$\begin{aligned} x_{t+1} &= x_t - \eta \left[\nabla f(x_t) + Z(x_t; \omega_t) \right] \\ \text{step-size} & \text{zero-mean noise} \end{aligned}$$

Q: What is the asymptotic distribution of SGD?

What is known?

- *f* strongly convex: SGD converges to (almost) the minimizer
- *f* convex: average of SGD iterates (almost) converges to minimizers
- *f* nonconvex:
 - In average, close to critical points (Lan, 2012)

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\|\nabla f(x_t)\|^2\right] = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

• With probability 1, SGD is not stuck in (strict) saddle points (Lee et al., 2016, 2017)

Q: Which critical points (and which local minima) are visited the most in the long run — and by how much?

New approach: large deviations

TLDR: we describe the asymptotic distribution of SGD in nonconvex problems through a large deviation approach

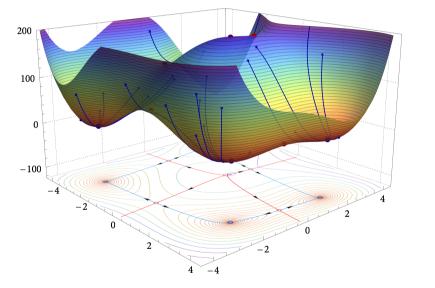
Outline:

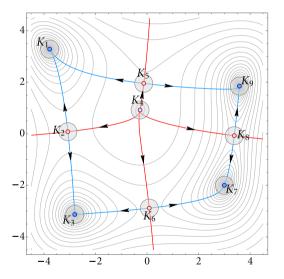
- 1. Informal result
- 2. Less informal overview of the approach

On the objective function f

Simplified framework:

$${\rm crit}(f) \coloneqq \{x: \nabla f(x) = 0\} = \big\{c_1, c_2, ..., c_p\big\}$$





Himmelblau function

In the paper: connected components $K_1, K_2, ..., K_p$

Asymptotic distribution

Invariant measure: probability measure μ_∞ such that

$$x_t \sim \mu_\infty \qquad \Rightarrow \qquad x_{t+1} \sim \mu_\infty$$

Invariant measures are limit points of the mean occupation measures of the iterates of SGD: for any set \mathcal{B} , as $n \to \infty$, $\mathbb{E}\left[\frac{1}{n}\sum_{t=1}^{n} 1\{x_t \in \mathcal{B}\}\right] \approx \mu_{\infty}(\mathcal{B})$

Q: Where do invariant measures of SGD concentrate?

Main results (informal)

1. Concentration near critical points:

$$\mu_\infty(\operatorname{crit}(f)) \to 1 \quad \text{as } \eta \to 0$$

2. Saddle-point avoidance:

 $\mu_{\infty}(\text{saddle point}) \ll \mu_{\infty}(\text{local minima})$

3. Boltzmann-Gibbs distribution: for some energy levels E_i ,

$$\mu_{\infty}(c_i) \propto \exp\!\left(-\frac{E_i}{\eta}\right)$$

4. Ground state concentration: there is i_0 such that

$$\mu_{\infty} \bigl(c_{i_0} \bigr) \to 1 \quad \text{as } \eta \to 0$$

Challenges and techniques

- No known approach to analyze the asymptotic distribution of SGD on non-convex problems e.g. SDE approximations only valid on finite time horizons
- We leverage large deviation theory and the theory of random dynamical systems,
 → Estimate the probability of rare events, such as SGD escaping a local minima
- We adapt the theory of Freidlin & Wentzell (1998); Kifer (1988) to SGD with two main challenges: a) Lack of compactness
 - b) Realistic noise models (finite sum)
 - ightarrow Remedy these issues by refining the analysis

References

Freidlin, M. I., & Wentzell, A. D., 2012. Random perturbations of dynamical systems. Springer

Kifer, Y., 1988. Random perturbations of dynamical systems. Birkhäuser

Objective and noise assumptions

Objective assumptions: f is coercive and β -smooth

Noise assumptions:

- + $\mathbb{E}[Z(x;\omega)]=0,\,\mathrm{cov}(Z(x;\omega))\succ 0,\,Z(x;\omega)=O(\|x\|)$ almost surely
- $Z(x;\omega)$ is σ sub-Gaussian:

$$\log \mathbb{E}\left[e^{\langle v, Z(x;\omega) \rangle}\right] \le \frac{\sigma^2}{2} \|v\|^2$$

• SNR high enough:

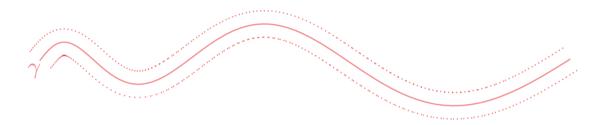
 $\liminf_{\|x\|\to\infty} rac{\|
abla f(x)\|^2}{\sigma^2}$ larger than some constant

Example (Finite-sum):

$$f(x) = \frac{1}{n}\sum_{i=1}^{n}f_{i}(x) + \frac{\lambda}{2}\|x\|^{2}$$
 with f_{i} Lipschitz and smooth;
$$Z(x;\omega) = \nabla f_{\omega}(x) - \frac{1}{n}\sum_{i=1}^{n}\nabla f_{i}(x)$$

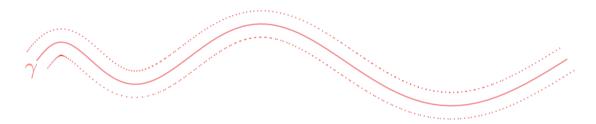
Large deviations for SGD

Consider $\gamma:[0,T]\to \mathbb{R}^d$ continuous path, $\mathbb{P}(\mathsf{SGD}\approx\gamma)=?$



Large deviations for SGD

Consider $\gamma:[0,T]\to \mathbb{R}^d$ continuous path, $\mathbb{P}(\mathsf{SGD}\approx\gamma)=?$



Lemma: SGD admits a large deviation principle as $\eta \to 0$: for any continuous path $\gamma : [0, T] \to \mathbb{R}^d$, $\mathbb{P}(\text{SGD on } [0, T/\eta] \approx \gamma) \approx \exp\left(-\frac{\mathcal{S}_T[\gamma]}{\eta}\right)$ with $\mathcal{S}_T[\gamma] = \int_0^T \mathcal{L}(\gamma_t, \dot{\gamma}_t) dt$

Cumulant generating function of $Z(x; \omega)$:

$$\begin{split} \mathcal{H}(x,v) &= \log \mathbb{E}\big[e^{\langle v, Z(x;\omega)\rangle}\big] \\ \mathcal{L}(x,v) &= \mathcal{H}^*(x,-v-\nabla f(x))) \end{split}$$

Lagrangian:

Gaussian noise:

Cumulant generating function:

Lagrangian:

Action functional:

$$\begin{split} Z(x;\omega) &\sim N\big(0,\sigma^2 I_d\big) \\ \mathcal{H}(x,v) &= \frac{\sigma^2}{2} \|v\|^2 \\ \mathcal{L}(x,v) &= \frac{\|v + \nabla f(x)\|^2}{2\sigma^2} \end{split}$$

$$\mathcal{S}_{T}[\boldsymbol{\gamma}] = \frac{1}{2\sigma^{2}}\int_{0}^{T} \|\dot{\boldsymbol{\gamma}}_{t} + \nabla f(\boldsymbol{\gamma}_{t})\|^{2}dt$$

- $\mathcal{S}_T[\gamma] = 0$ iff _____
- The farther γ is from being a gradient flow, the ____ $\mathcal{S}_T[\gamma]$
- The farther γ is from being a gradient flow, the _____ the probability of SGD following γ

Gaussian noise:

Cumulant generating function:

Lagrangian:

Action functional:

$$\begin{split} Z(x;\omega) &\sim N\big(0,\sigma^2 I_d\big) \\ \mathcal{H}(x,v) &= \frac{\sigma^2}{2} \|v\|^2 \\ \mathcal{L}(x,v) &= \frac{\|v + \nabla f(x)\|^2}{2\sigma^2} \end{split}$$

$$\mathcal{S}_{T}[\boldsymbol{\gamma}] = \frac{1}{2\sigma^{2}}\int_{0}^{T} \|\dot{\boldsymbol{\gamma}}_{t} + \nabla f(\boldsymbol{\gamma}_{t})\|^{2}dt$$

- + $\mathcal{S}_T[\gamma]=0$ iff γ is a gradient flow: $\dot{\gamma}_t=-\nabla f(\gamma_t)$
- The farther γ is from being a gradient flow, the ____ $\mathcal{S}_T[\gamma]$
- The farther γ is from being a gradient flow, the ____ the probability of SGD following γ

Gaussian noise:

Cumulant generating function:

Lagrangian:

Action functional:

$$\begin{split} Z(x;\omega) &\sim N\big(0,\sigma^2 I_d\big) \\ \mathcal{H}(x,v) &= \frac{\sigma^2}{2} \|v\|^2 \\ \mathcal{L}(x,v) &= \frac{\|v + \nabla f(x)\|^2}{2\sigma^2} \end{split}$$

$$\mathcal{S}_{T}[\boldsymbol{\gamma}] = \frac{1}{2\sigma^{2}}\int_{0}^{T} \|\dot{\boldsymbol{\gamma}}_{t} + \nabla f(\boldsymbol{\gamma}_{t})\|^{2}dt$$

- + $\mathcal{S}_T[\gamma]=0$ iff γ is a gradient flow: $\dot{\gamma}_t=-\nabla f(\gamma_t)$
- The farther γ is from being a gradient flow, the larger $\mathcal{S}_T[\gamma]$
- The farther γ is from being a gradient flow, the _____ the probability of SGD following γ

Gaussian noise:

Cumulant generating function:

Lagrangian:

Action functional:

$$\begin{split} Z(x;\omega) &\sim N\big(0,\sigma^2 I_d\big) \\ \mathcal{H}(x,v) &= \frac{\sigma^2}{2} \|v\|^2 \\ \mathcal{L}(x,v) &= \frac{\|v + \nabla f(x)\|^2}{2\sigma^2} \end{split}$$

$$\mathcal{S}_{T}[\boldsymbol{\gamma}] = \frac{1}{2\sigma^{2}}\int_{0}^{T} \|\dot{\boldsymbol{\gamma}}_{t} + \nabla f(\boldsymbol{\gamma}_{t})\|^{2}dt$$

- + $\mathcal{S}_T[\gamma]=0$ iff γ is a gradient flow: $\dot{\gamma}_t=-\nabla f(\gamma_t)$
- The farther γ is from being a gradient flow, the larger $\mathcal{S}_T[\gamma]$
- The farther γ is from being a gradient flow, the larger the probability of SGD following γ

Transition between critical points

Given c_i , c_j critical points, what is

 $\mathbb{P}(\text{SGD transitions from } c_i \text{ to } c_j)?$

Involves the transition cost:

$$B_{i,j} = \inf \big\{ \mathcal{S}_T[\gamma] \mid \gamma(0) = c_i, \gamma(T) = c_j, T \in \mathbb{N} \big\}$$

Transition graph

Proposition: Transition probability from c_i to c_j :

$$\mathbb{P} \big(\text{SGD transitions from } c_i \text{ to } c_j \big) \approx \exp \left(- \frac{B_{i,j}}{\eta} \right)$$

where $B_{i,j}$ transition cost

$$B_{i,j} = \inf \bigl\{ \mathcal{S}_T[\gamma] \mid \gamma(0) \in c_i, \gamma(T) \in c_j, T \in \mathbb{N} \bigr\}$$

Technical assumption: $B_{i,j} < +\infty$ for all c_i, c_j

Transition graph: complete graph on $\{c_1, ..., c_p\}$ with weights $B_{i,j}$ on $i \to j$ **Energy** of c_i :

$$E_i = \min \left\{ \sum_{j \to k \in T} B_{j,k} \mid T \text{ spanning tree pointing to } i
ight\}$$

Main results (more formal)

Theorem: Given : $\varepsilon > 0$, \mathcal{U}_i neighborhoods of c_i , and $\eta > 0$ small enough,

1. Concentration on $\operatorname{crit}(f)$: there is some $\lambda > 0$ s.t.

$$\mu_{\infty} \left(\bigcup_{i=1}^{p} \mathcal{U}_{i} \right) \geq 1 - e^{-\frac{\lambda}{\eta}}, \qquad \qquad \text{for some } \lambda > 0$$

2. Boltzmann-Gibbs distribution: for all *i*,

$$\mu_{\infty}(\mathcal{U}_i) \propto \exp\!\left(-\frac{E_i + \mathcal{O}(\varepsilon)}{\eta}\right)$$

3. Avoidance of non-minimizers: if c_i is not minimizing, then there is c_j minimizing with $E_j < E_i$:

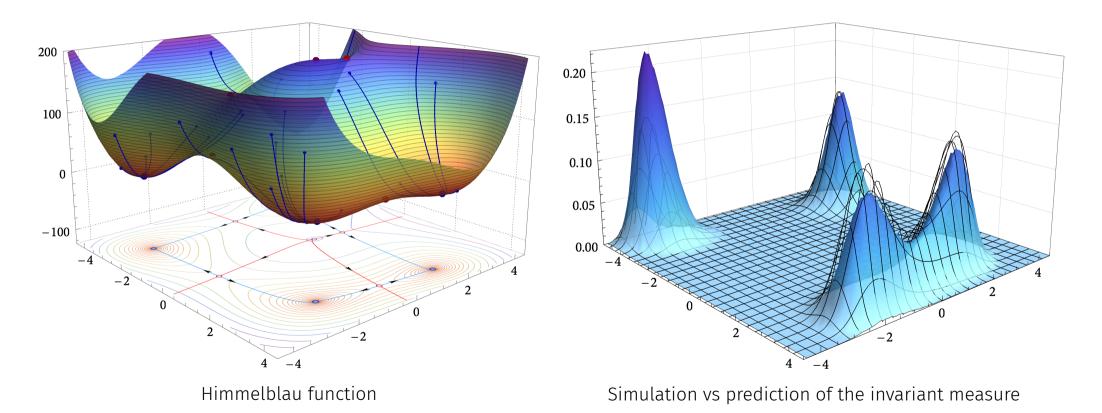
$$\frac{\mu_{\infty}(\mathcal{U}_{i})}{\mu_{\infty}(\mathcal{U}_{j})} \leq e^{-\frac{\lambda_{i,j}}{\eta}} \qquad \qquad \text{for some } \lambda_{i,j} > 0$$

4. Concentration on ground states: given \mathcal{U}_0 neighborhood of the ground states $c_0 = \operatorname{argmin}_i E_i$,

$$\mu_{\infty}(\mathcal{U}_{0}) \geq 1 - e^{-\frac{\lambda_{0}}{\eta}}, \qquad \qquad \text{for some } \lambda_{0} > 0$$

Example: Gaussian noise

If $Z(x;\omega) \sim Nig(0,\sigma^2 I_dig)$, then $E_i = rac{f(x_i)}{2\sigma^2}$ for any $x_i \in K_i$



Conclusion: a first step towards understanding nonconvex problems

- 1. We introduce a theory of large deviation for SGD in nonconvex problems.
- 2. We demonstrate its potential by characterizing the asymptotic distribution of SGD.
- 3. Coming next:
 - Explicit bounds
 - Time to convergence (reach some particular minima, converge to the invariant measure)
 - Link to the geometry of the loss landscape of neural networks

Image credit: losslandscape.com