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Problem of interest

For f: RY — R nonconvex (smooth)

minimize f(x)
zeRY

Stochastic Gradient Descent (SGD): with constant step-size n > 0

L1 = Ly — 1 Vf(x) + Z(xy; wy)

step-size Zero-mean noise

Q: What is the asymptotic distribution of SGD?



What is known?

« f strongly convex: SGD converges to (almost) the minimizer
« f convex: average of SGD iterates (almost) converges to minimizers
* f nonconvex:

* In average, close to critical points (Lan, 2012)

15 |Vf<xt>|2] -o(—=)

t=0
 With probability 1, SGD is not stuck in (strict) saddle points (Lee et al., 2016, 2017)

E

Q: Which critical points (and which local minima) are visited the most in the long run — and
by how much?



New approach: large deviations

TLDR: we describe the asymptotic distribution of SGD in nonconvex problems through a
large deviation approach

Outline:
1. Informal result
2. Less informal overview of the approach



On the objective function f

Simplified framework:

crit(f) = {z : Vf(z) =0} = {c1,¢9,...,¢, }

Himmelblau function

In the paper: connected components K, K, ..., K,



Asymptotic distribution

Invariant measure: probability measure u,, such that

Ty ~ Moo = Tir1 ™~ Moo

p
Invariant measures are limit points of the mean occupation measures of the iterates of SGD:

for any set B, as n — o,

E [% Zn: 1z, € B} | ~ pu(B)

t=1

Q: Where do invariant measures of SGD concentrate?



Main results (informal)

1. Concentration near critical points:
Lo (crit(f)) =1 asn—0
2. Saddle-point avoidance:
Lo (Saddle point) « u (local minima)
3. Boltzmann-Gibbs distribution: for some energy levels E;,

oo (€1) o exp (—%)

4. Ground state concentration: there is i, such that

,uoo(cz-o) —1 asn—=0



Challenges and techniques

* No known approach to analyze the asymptotic distribution of SGD on non-convex problems

e.g. SDE approximations only valid on finite time horizons

» We leverage large deviation theory and the theory of random dynamical systems,
— Estimate the probability of rare events, such as SGD escaping a local minima

« We adapt the theory of Freidlin & Wentzell (1998); Kifer (1988) to SGD with two main challenges:

a) Lack of compactness
b) Realistic noise models (finite sum)
— Remedy these issues by refining the analysis
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Objective and noise assumptions

Objective assumptions: f is coercive and 3-smooth

Noise assumptions:
* E[Z(z;w)] =0, cov(Z(z;w)) > 0, Z(xz;w) = O(|z|) almost surely

« Z(z;w) Is o sub-Gaussian:

log]E[e<U,Z(x;w>>] S %2”/()”2
« SNR high enough:

2
liminfy,, M larger than some constant

Example (Finite-sum):

1 A . o
flx) ==Y fi(x) + =|z|* with f; Lipschitz and smooth;
n 4 2

Z(w:) = Vi ()~ + Y Vi (2)



Large deviations for SGD

Consider v : [0, T] — R? continuous path, P(SGD ~ v) =?



Large deviations for SGD

Consider v : [0, T] — R? continuous path, P(SGD ~ v) =?

( )

Lemma: SGD admits a large deviation principle as n — 0: for any continuous path ~ : [0,T] — R¢,

STM)

Ui

P(SGD on [0,T/n] ~ ) =~ exp (—
with
T
Srbl = [ £ln it
0

\ J

Cumulant generating function of Z(z; w): H(z,v) = 1OgE[e<v,Z(w;w)>]
Lagrangian: L(z,v) =H*(x,—v—Vf(x)))



LDP in the Gaussian case

Gaussian noise: Z(z;w) ~ N(0,0%1,)
Cumulant generating function: H(x,v) = "72||v||2
Lagrangian: L(z,v) = ”U-{_Zj?(aj)nz

Action functional:

IR
Srbl =507 | I+ ViGOIat
0

Key observations:
* Srly]=01ff
« The farther ~ is from being a gradient flow, the _____ St

e The farther v is from being a gradient flow, the
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LDP in the Gaussian case

Gaussian noise: Z(z;w) ~ N(0,0%1,)
Cumulant generating function: H(x,v) = "72||v||2
Lagrangian: L(z,v) = ”U-{_Zj?(aj)nz

Action functional:

IR
Srbl =507 | I+ ViGOIat
0

Key observations:

« Sp[v] =0iff v is a gradient flow: 4, = =V f(,)

« The farther ~ is from being a gradient flow, the larger §4[~]

e The farther v Is from being a gradient flow, the larger the probability of SGD following ~



Transition between critical points

Given ¢;, c; critical points, what is
P(SGD transitions from ¢; to ¢;)?

Involves the transition cost:

B, ;= inf{STh’] | ¥(0) = ¢;,v(T) =¢;, T € N}



Transition graph

( )

Proposition: Transition probability from c; to c;:

. . B,L ]
P(SGD transitions from ¢; to ¢;) ~ exp | ———=
n

where B, ; transition cost

B; ;= inf{S7[y] | 7(0) € ¢;, ¥(T) € ¢;, I' € N}

\ J

Technical assumption: B, ; < +oo for all ¢;, ¢;

Transition graph: complete graph on {c¢,, ...,c, } with weights B, ; on i — j

Energy of c;:

E, = min{ Y B, | T spanning tree pointing to z}

J—keT




Main results (more formal)

r

Theorem: Given : £ > 0, U, neighborhoods of ¢;, and n > 0 small enough,

1. Concentration on crit(f): there is some X\ > 0 s.t.
poo (L U-)zl—e_%, for some XA > 0

=1 7
2. Boltzmann-Gibbs distribution: for all 4,

Proo (U) ox exp (—E+TO(8))

3. Avoidance of non-minimizers: if ¢; is not minimizing, then there is c¢; minimizing with E; < E;:
Poo(Us) i
———"<e 7 for some X; ; >0
Hoo (Z[J) ’

4. Concentration on ground states: given U, neighborhood of the ground states ¢, = argmin, E,,

A

Poo(Ug) > 1 — e, forsome Ay > 0




1an noise

Example: Gauss

forany z;, € K,
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Simulation vs prediction of the invariant measure

Himmelblau function
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Conclusion: a first step towards understanding nonconvex problems

1. We introduce a theory of large deviation for SGD in nonconvex problems.

2. We demonstrate its potential by characterizing the asymptotic distribution of SGD.

3. Coming next:
« Explicit bounds
« Time to convergence (reach some particular minima, converge to the invariant measure)
 Link to the geometry of the loss landscape of neural networks

Image credit: losslandscape.com

16



