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Problem of interest

For 𝑓 : ℝ𝑑 → ℝ nonconvex (smooth)

minimize
𝑥∈ℝ𝑑

𝑓(𝑥)

Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 [∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)]
zero-mean noisestep-size

Q: What is the asymptotic distribution of SGD?
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What is known?

• 𝑓  strongly convex: SGD converges to (almost) the minimizer
• 𝑓  convex: average of SGD iterates (almost) converges to minimizers
• 𝑓  nonconvex:

• In average, close to critical points (Lan, 2012)

𝔼[
1
𝑇

∑
𝑇−1

𝑡=0
‖∇𝑓(𝑥𝑡)‖

2] = 𝒪(
1

√
𝑇
)

• With probability 1, SGD is not stuck in (strict) saddle points (Lee et al., 2016, 2017)

Q: Which critical points (and which local minima) are visited the most in the long run — and
by how much?
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New approach: large deviations

TLDR: we describe the asymptotic distribution of SGD in nonconvex problems through a
large deviation approach

Outline:
1. Informal result
2. Less informal overview of the approach
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On the objective function 𝑓

Simplified framework:

crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝑐1, 𝑐2,…, 𝑐𝑝}

Himmelblau function

In the paper: connected components 𝐾1,𝐾2,…,𝐾𝑝
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Asymptotic distribution

Invariant measure: probability measure 𝜇∞ such that
𝑥𝑡 ∼ 𝜇∞ ⇒ 𝑥𝑡+1 ∼ 𝜇∞

Invariant measures are limit points of the mean occupation measures of the iterates of SGD:

for any set ℬ, as 𝑛 → ∞,

𝔼[
1
𝑛
∑
𝑛

𝑡=1
1{𝑥𝑡 ∈ ℬ}] ≈ 𝜇∞(ℬ)

Q: Where do invariant measures of SGD concentrate?
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Main results (informal)

1. Concentration near critical points:

𝜇∞(crit(𝑓)) → 1 as 𝜂 → 0

2. Saddle-point avoidance:

𝜇∞(saddle point) ≪ 𝜇∞(local minima)

3. Boltzmann-Gibbs distribution: for some energy levels 𝐸𝑖,

𝜇∞(𝑐𝑖) ∝ exp(−
𝐸𝑖
𝜂
)

4. Ground state concentration: there is 𝑖0 such that

𝜇∞(𝑐𝑖0) → 1 as 𝜂 → 0
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Challenges and techniques

• No known approach to analyze the asymptotic distribution of SGD on non-convex problems
e.g. SDE approximations only valid on finite time horizons

• We leverage large deviation theory and the theory of random dynamical systems,
→ Estimate the probability of rare events, such as SGD escaping a local minima

• We adapt the theory of Freidlin & Wentzell (1998); Kifer (1988) to SGD with two main challenges:
a) Lack of compactness
b) Realistic noise models (finite sum)
→ Remedy these issues by refining the analysis

References
Freidlin, M. I., & Wentzell, A. D., 2012. Random perturbations of dynamical systems. Springer

Kifer, Y., 1988. Random perturbations of dynamical systems. Birkhäuser
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Objective and noise assumptions

Objective assumptions: 𝑓  is coercive and 𝛽-smooth
Noise assumptions:
• 𝔼[𝑍(𝑥; 𝜔)] = 0, cov(𝑍(𝑥; 𝜔)) ≻ 0, 𝑍(𝑥; 𝜔) = 𝑂(‖𝑥‖) almost surely
• 𝑍(𝑥; 𝜔) is 𝜎 sub-Gaussian:

log 𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩] ≤ 𝜎2

2 ‖𝑣‖2
• SNR high enough:

lim inf‖𝑥‖→∞
‖∇𝑓(𝑥)‖2

𝜎2 larger than some constant

Example (Finite-sum):

𝑓(𝑥) =
1
𝑛
∑
𝑛

𝑖=1
𝑓𝑖(𝑥) +

𝜆
2
‖𝑥‖2 with 𝑓𝑖 Lipschitz and smooth;

𝑍(𝑥; 𝜔) = ∇𝑓𝜔(𝑥) −
1
𝑛
∑
𝑛

𝑖=1
∇𝑓𝑖(𝑥)
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Large deviations for SGD

Consider 𝛾 : [0, 𝑇 ] → ℝ𝑑 continuous path, ℙ(SGD ≈ 𝛾) = ?

𝛾
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Large deviations for SGD

Consider 𝛾 : [0, 𝑇 ] → ℝ𝑑 continuous path, ℙ(SGD ≈ 𝛾) = ?

𝛾

Lemma: SGD admits a large deviation principle as 𝜂 → 0: for any continuous path 𝛾 : [0, 𝑇 ] → ℝ𝑑,

ℙ(SGD on [0, 𝑇 /𝜂] ≈ 𝛾) ≈ exp(−
𝒮𝑇 [𝛾]
𝜂

)

with

𝒮𝑇 [𝛾] = ∫
𝑇

0
ℒ(𝛾𝑡, ̇𝛾𝑡)𝑑𝑡

Cumulant generating function of 𝑍(𝑥; 𝜔): ℋ(𝑥, 𝑣) = log𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩]

Lagrangian: ℒ(𝑥, 𝑣) = ℋ∗(𝑥,−𝑣 −∇𝑓(𝑥)))
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LDP in the Gaussian case

Gaussian noise: 𝑍(𝑥; 𝜔) ∼ 𝑁(0, 𝜎2𝐼𝑑)

Cumulant generating function: ℋ(𝑥, 𝑣) = 𝜎2

2 ‖𝑣‖2

Lagrangian: ℒ(𝑥, 𝑣) = ‖𝑣+∇𝑓(𝑥)‖2

2𝜎2

Action functional:

𝒮𝑇 [𝛾] =
1

2𝜎2 ∫
𝑇

0
‖ ̇𝛾𝑡 +∇𝑓(𝛾𝑡)‖

2𝑑𝑡

Key observations:

• 𝒮𝑇 [𝛾] = 0 iff _____

• The farther 𝛾 is from being a gradient flow, the _____ 𝒮𝑇 [𝛾]

• The farther 𝛾 is from being a gradient flow, the _____ the probability of SGD following 𝛾
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Transition between critical points

Given 𝑐𝑖, 𝑐𝑗 critical points, what is

ℙ(SGD transitions from 𝑐𝑖 to 𝑐𝑗)?

Involves the transition cost:

𝐵𝑖,𝑗 = inf{𝒮𝑇 [𝛾] | 𝛾(0) = 𝑐𝑖, 𝛾(𝑇 ) = 𝑐𝑗, 𝑇 ∈ ℕ}

𝛾(𝑡)
𝑐𝑖

𝑐𝑗
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Transition graph

Proposition: Transition probability from 𝑐𝑖 to 𝑐𝑗:

ℙ(SGD transitions from 𝑐𝑖 to 𝑐𝑗) ≈ exp(−
𝐵𝑖,𝑗

𝜂
)

where 𝐵𝑖,𝑗 transition cost

𝐵𝑖,𝑗 = inf{𝒮𝑇 [𝛾] | 𝛾(0) ∈ 𝑐𝑖, 𝛾(𝑇 ) ∈ 𝑐𝑗, 𝑇 ∈ ℕ}

Technical assumption: 𝐵𝑖,𝑗 < +∞ for all 𝑐𝑖, 𝑐𝑗

Transition graph: complete graph on {𝑐1,…, 𝑐𝑝} with weights 𝐵𝑖,𝑗 on 𝑖 → 𝑗

Energy of 𝑐𝑖:

𝐸𝑖 = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 𝑖}
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Main results (more formal)

Theorem: Given : 𝜀 > 0, 𝒰𝑖 neighborhoods of 𝑐𝑖, and 𝜂 > 0 small enough,

1. Concentration on crit(𝑓): there is some 𝜆 > 0 s.t.
𝜇∞(⋃𝑝

𝑖=1 𝒰𝑖) ≥ 1 − 𝑒−
𝜆
𝜂 , for some 𝜆 > 0

2. Boltzmann-Gibbs distribution: for all 𝑖,

𝜇∞(𝒰𝑖) ∝ exp(−𝐸𝑖+𝒪(𝜀)
𝜂 )

3. Avoidance of non-minimizers: if 𝑐𝑖 is not minimizing, then there is 𝑐𝑗 minimizing with 𝐸𝑗 < 𝐸𝑖:

𝜇∞(𝒰𝑖)
𝜇∞(𝒰𝑗)

≤ 𝑒−
𝜆𝑖,𝑗
𝜂 for some 𝜆𝑖,𝑗 > 0

4. Concentration on ground states: given 𝒰0 neighborhood of the ground states 𝑐0 = argmin𝑖 𝐸𝑖,

𝜇∞(𝒰0) ≥ 1 − 𝑒−
𝜆0
𝜂 , for some 𝜆0 > 0
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Example: Gaussian noise

If 𝑍(𝑥; 𝜔) ∼ 𝑁(0, 𝜎2𝐼𝑑), then 𝐸𝑖 =
𝑓(𝑥𝑖)
2𝜎2 for any 𝑥𝑖 ∈ 𝐾𝑖

Himmelblau function Simulation vs prediction of the invariant measure
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Conclusion: a first step towards understanding nonconvex problems
1. We introduce a theory of large deviation for SGD in nonconvex problems.
2. We demonstrate its potential by characterizing the asymptotic distribution of SGD.
3. Coming next:

• Explicit bounds
• Time to convergence (reach some particular minima, converge to the invariant measure)
• Link to the geometry of the loss landscape of neural networks

Image credit: losslandscape.com
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