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Wäıss Azizian Ioannis Mitliagkas Simon Lacoste-Julien
Gauthier Gidel

AISTATS 2020

1 / 22



Joint work with...
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Motivation

I More and more ML frameworks formulated as
games [Goodfellow et al., 2014; Madry et al., 2018].

I However, new challenges arise in game optimization, such
as cycles [Balduzzi et al., 2018; Gidel et al., 2019b]

⇒ Some classes of games still poorly understood...
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(Partial and biased) landscape of game optimization
Cooperative games: strongly monotone games
I Standard setting for last-iterate convergence guarantees
I Reasonable methods converge linearly (such as the gradient

method [Rockafellar, 1976], extragradient [Tseng, 1995]...)
Bilinear example: Particular “adversarial” game

min
x∈Rd1

max
y∈Rd2

xTAy + bT x + cT y

I Same cyclic behavior as in GAN training [Mescheder et al.,
2017]: gradient method diverges! [Balduzzi et al., 2018;
Gidel et al., 2019b]

I Variants have been introduced,
I extragradient [Liang and Stokes, 2018; Gidel et al., 2019a]
I optimistic gradient [Daskalakis et al., 2018]
I consensus optimization [Mescheder et al., 2017], ...

⇒ Converge linearly on this particular example
5 / 22



Problems

I No unified analysis of the variants of the gradient method
for both cooperative games and the bilinear example.

I What happens for general adversarial games, i.e. games
with no strong monotonicity ?

I What happens “in between”, i.e. for games with both a
cooperative and an adversarial component ?
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Contributions

For unconstrained n-player games,
I First local and global unified analysis of extragradient,

I Unifies the results on cooperative games and the bilinear
example.

I Linear convergence rate for non-strongly monotone
adversarial games.

I In between extrgradient enjoys the best of both world.
I Extend this analysis to optimistic gradient and consensus

optimization.
I Lower bounds which show that extragradient is optimal

among general extrapolation methods (without
momentum).
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Classes of games and local analysis of
extragradient
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Unconstrained two-player games

Player 1:
Parameter ω1 ∈ Rd1 ,
Goal: minimize loss `1(ω1, ω2)

Player 2:
Parameter ω2 ∈ Rd2 ,
Goal: minimize loss `2(ω1, ω2)

We want a Nash equilibrium: (ω∗1, ω∗2) ∈ Rd1 × Rd2 s.t.
ω∗1 ∈ argmin

ω1∈Rd1
`1(ω1, ω

∗
2)

ω∗2 ∈ argmin
ω2∈Rd2

`2(ω
∗
1, ω2)
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Gradient vector field
First-order condition: If `1(·, ω2) and `2(ω1, ·) convex ∀ω1, ω2,
ω∗1 ∈ argmin

ω1∈Rd1
`1(ω1, ω

∗
2)

ω∗2 ∈ argmin
ω2∈Rd2

`2(ω
∗
1, ω2)

⇐⇒

{
∇ω1`1(ω

∗) = 0

∇ω2`2(ω
∗) = 0

⇐⇒ v(ω∗) = 0

Gradient method:{
ωt+11 = ωt1 − η∇ω1`1(ω

t
1, ω

t
2)

ωt+12 = ωt2 − η∇ω2`2(ω
t
1, ω

t
2)

⇐⇒ ωt+1 = ωt − ηv(ωt)

Can be rewritten using the gradient vector field:

v(ω) = v(ω1, ω2) =

(
∇ω1`1(ω1, ω2)
∇ω2`2(ω1, ω2)

)
Problem: Given a vector field v , find ω∗ s.t. v(ω∗) = 0.
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Spectral properties govern local behaviour

Around ω∗:
v(ω) ≈ v(ω∗)︸ ︷︷ ︸

=0

+∇v(ω∗)(ω − ω∗)

Main idea:
Local behavior of a method←→ Properties of Sp∇v(ω∗).
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Cooperative games

Assumptions:
I v Lipschitz ≈

|λ| ≤ L, ∀λ ∈ Sp∇v(x∗)

I Strong monotonicity ≈

<λ ≥ µ, ∀λ ∈ Sp∇v(x∗)

0 5 10

−10i

−5i

0i

5i

10i

0 L

Lemma (Bertsekas [1999]; Gidel et al. [2019b])
Gradient method converges linearly at ω∗ iff

∀λ ∈ Sp∇v(ω∗), <λ > 0
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For strongly convex optimization:
Sp∇v(ω∗) = Sp∇2f (ω∗) ⊂ [µ,L] with µ > 0
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Bilinear game

For A ∈ Rm×m, b, c ∈ Rm,

min
x∈Rm

max
y∈Rm

xTAy + bT x + cT y

Spectrum:

Sp∇v(ω∗) = {±iσ |σ2 ∈ SpAAT}

0 5 10

−10i

−5i

0i

5i

10i

0 L

iσmin(A)

iσmax (A)

⇒ Bilinear games as limiting example of GANs [Mescheder et al.,
2017]
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Bilinear game

From Berard et al. [2020]
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Extragradient

Extragradient method [Kor-
pelevich, 1976]:

ωt+1 = ωt−ηv(ωt − ηv(ωt)︸ ︷︷ ︸
ωt+1/2

)

?

ωt

ωt+1/2

ωt+1

x

y

14 / 22



Extragradient

Extragradient method [Kor-
pelevich, 1976]:

ωt+1 = ωt−ηv(ωt − ηv(ωt)︸ ︷︷ ︸
ωt+1/2

)

?

ωt

ωt+1/2

ωt+1

x

y

14 / 22



Extragradient

Extragradient method [Kor-
pelevich, 1976]:

ωt+1 = ωt−ηv(ωt − ηv(ωt)︸ ︷︷ ︸
ωt+1/2

)

?

ωt

ωt+1/2

ωt+1

x

y

14 / 22



Extragradient

Extragradient method [Kor-
pelevich, 1976]:

ωt+1 = ωt−ηv(ωt − ηv(ωt)︸ ︷︷ ︸
ωt+1/2

)

?

ωt

ωt+1/2

ωt+1

x

y
Theorem (See Mokhtari et al. [2019])
If v is µ-strongly monotone and L-Lipschitz,

‖ωt − ω∗‖2 ≤
(
1−

µ

4L

)t
‖ω0 − ω∗‖2
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Lemma (Tseng [1995])
On the bilinear game,

‖ωt − ω∗‖2 ≤
(
1−
1

2

σmin(A)
2

σmax (A)2

)t
‖ω0 − ω∗‖2
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Unifying local analysis of extragradient

Theorem
If, ∀λ ∈ Sp∇v(x∗),
I |λ| ≤ L

I <λ ≥ µ ≥ 0
I |λ| ≥ γ ≥ 0

then,

0 5 10

−10i

−5i

0i

5i

10i

0 L

‖xt − x∗‖ .
(
1−
1

4

(

µ

L
+
1

16

γ2

L2

))t
‖x0 − x∗‖
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µ

γ
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4

(
µ

L
+
1

16

γ2

L2

))t
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⇒ recovers the standard rate with µ
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Linear convergence without strong monotonicity

Corollary
If, ∀λ ∈ Sp∇v(x∗),
I |λ| ≤ L
I <λ ≥ µ = 0

I |λ| ≥ γ ≥ 0
then,

0 5 10

−10i

−5i

0i

5i

10i

0 Lγ

‖xt − x∗‖ .
(
1−

1

64

γ2

L2

)t
‖x0 − x∗‖
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I |λ| ≥ γ ≥ 0
then,

0 5 10

−10i

−5i

0i

5i

10i

0 L

iσmin(A)

iσmax (A)

γ

‖xt − x∗‖ .
(
1−

1

64

γ2

L2

)t
‖x0 − x∗‖

⇒ recovers the bilinear case γ = σmin(A).
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Best of both worlds in between

For ε > 0 small,
min
x∈R

max
y∈R

ε
2(x
2 − y2) + xy

I µ = ε

I γ = 1− ε
I L = 1+ ε

γ2

L2
≈ 1− 2ε�

µ

L
≈ ε
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Global analysis

Local Assumptions.
I |λ| ≤ L

I <λ ≥ µ ≥ 0
I |λ| ≥ γ > 0

∀λ ∈ Sp∇v(x∗),

Global Assumptions.
I L-Lipschitz,

I µ-strongly monotone (or only
monotone),

I Error bound of Tseng [1995] ≈

σmin(∇v) ≥ γ

⇒ Global unifying guarantees for extragradient, optimistic
gradient descent and consensus optimization ! (see paper for
details)
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Conclusion and perspectives

Takeaway: Local and global unified analysis of extragradient,

I Unifies the results on cooperative games and
the bilinear example.

I Linear convergence rate for non-strongly
monotone adversarial games.

I In between extrgradient enjoys the best of
both world.

Not discussed: Lower bounds, comparison with gradient
descent, link to proximal method, consensus
optimization and optimistic method... See the
paper !

Perspectives: Now that we have convergence for a broad class
of games, can we have faster convergence with the
same unfiying properties ?
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