What is the Long-Run Behaviour of SGD? A Large Deviation Analysis

Séminaire de Statistique, LPSM October 15, 2024

W. Azizian, F. Iutzeler, J. Malick, P. Mertikopoulos

Why SGD?

Training of deep neural networks = SGD on a nonconvex loss function

Image credit: losslandscape.com

Problem of interest

For $f: \mathbb{R}^d \to \mathbb{R}$ nonconvex (smooth)

$$\underset{x \in \mathbb{R}^d}{\operatorname{minimize}} \ f(x)$$

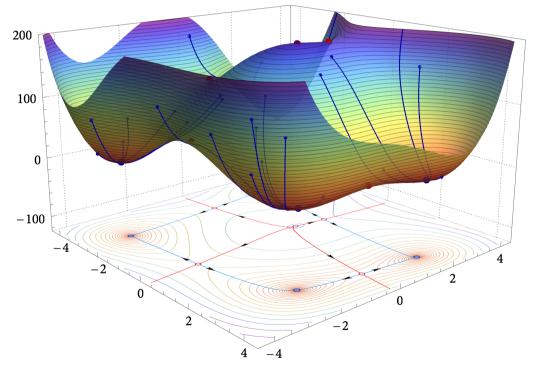
Stochastic Gradient Descent (SGD): with *constant* step-size $\eta > 0$

$$x_{t+1} = x_t - \eta \left[\nabla f(x_t) + Z(x_t; \omega_t) \right]$$
 step-size zero-mean noise

Q: What is the asymptotic behaviour of SGD?

Himmelblau function

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$



Himmelblau function

What is known?

What we are not doing:

- Stochastic Approximation: when $\eta_t \propto t^{-(1+\varepsilon)}$, convergence to local minima (Bertsekas & Tsitsiklis, 2000) but no information about which one.
- Sampling (MCMC, Langevin): scaling of the noise differs from SGD ⇒ analysis does not carry over
- Continuous-time limit (eg. SDE): only valid on finite time horizons

What is known?

What we are not doing:

- Stochastic Approximation: when $\eta_t \propto t^{-(1+\varepsilon)}$, convergence to local minima (Bertsekas & Tsitsiklis, 2000) but no information about which one.
- Sampling (MCMC, Langevin): scaling of the noise differs from SGD ⇒ analysis does not carry over
- Continuous-time limit (eg. SDE): only valid on finite time horizons

SGD with constant step-size:

- f strongly convex: SGD converges near the minimizer
- f convex: average of SGD iterates (almost) optimal
- *f* nonconvex:
 - In average, close to criticality (Lan, 2012)

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\|\nabla f(x_t)\|^2\right] = \mathcal{O}\bigg(\frac{1}{\sqrt{T}}\bigg)$$

• With probability 1, SGD is not stuck in (strict) saddle points (Brandière & Duflo, 1996; Mertikopoulos et al., 2020)

Q: Which critical points (and which local minima) are visited the most in the long run?

New approach: large deviations

TLDR: we describe the asymptotic behaviour of SGD in nonconvex problems through a large deviation approach

Published and presented at ICML 2024, Vienna, Austria

Outline:

- 1. Informal result
- 2. Less informal overview of the approach

On the objective function f

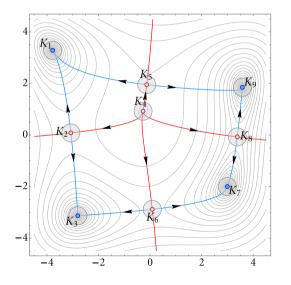
Regularity assumption:

$$\mathrm{crit}(f) \coloneqq \{x : \nabla f(x) = 0\} = \left\{K_1, K_2, ..., K_p\right\}$$

where K_i connected components (compact)

Himmelblau function





Asymptotic behaviour

Invariant measures are weak-* limit points of the mean occupation measures of the iterates of SGD: for any set \mathcal{B} , as $n \to \infty$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{t=1}^n 1\{x_t \in \mathcal{B}\}\right] \approx \mu_\infty(\mathcal{B})$$

Invariant measure: probability measure μ_{∞} such that

$$x_t \sim \mu_{\infty} \qquad \Rightarrow \qquad x_{t+1} \sim \mu_{\infty}$$

Q: Where do invariant measures of SGD concentrate?

Main results (informal)

1. Concentration near critical points:

$$\mu_{\infty}(\operatorname{crit}(f)) \to 1$$
 as $\eta \to 0$

2. Saddle-point avoidance:

$$\mu_{\infty}(\text{saddle point}) \ll \mu_{\infty}(\text{local minima})$$

3. Boltzmann-Gibbs distribution: for some energy levels E_i ,

$$\mu_{\infty}(K_i) \propto \exp\left(-\frac{E_i}{\eta}\right)$$

4. Ground state concentration: there is ${\cal K}_{i_0}$ that minimizes ${\cal E}_i$ such that,

$$\mu_{\infty} \big(K_{i_0} \big) o 1 \quad \text{as } \eta o 0$$

Challenges and techniques

- No known approach to analyze the asymptotic distribution of SGD on non-convex problems
- We leverage large deviation theory and the theory of random perturbations of dynamical systems,

 → Estimate the probability of rare events, such as SGD escaping a local minima
- We adapt the theory of random perturbations of dynamical systems with two main challenges:
 - a) Lack of compactness
 - b) Realistic noise models (finite sum)
 - → Remedy these issues by refining the analysis

References

Freidlin, M. I., & Wentzell, A. D., 2012. Random perturbations of dynamical systems. Springer

Kifer, Y., 1988. Random perturbations of dynamical systems. Birkhäuser

Objective and noise assumptions

Objective assumptions:

- $f \beta$ -smooth, i.e. ∇f is β -Lipschitz
- f is coercive: $\lim_{\|x\| \to \infty} f(x) = \lim_{\|x\| \to \infty} \|\nabla f(x)\| = +\infty$

Noise assumptions:

- $\mathbb{E}[Z(x;\omega)]=0$, $\mathrm{cov}(Z(x;\omega))\succ 0$, $Z(x;\omega)=O(\|x\|)$ almost surely
- $Z(x;\omega)$ is σ sub-Gaussian:

$$\log \mathbb{E} \left[e^{\langle v, Z(x;\omega) \rangle} \right] \le \frac{\sigma^2}{2} \|v\|^2$$

Example (Finite-sum):

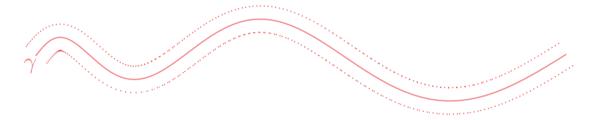
Consider $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + \frac{\lambda}{2} \|x\|^2$ with f_i Lipschitz and β -smooth.

SGD:

$$\begin{split} x_{t+1} &= x_t - \eta \bigg[\nabla f_{i_t}(x_t) + \lambda x_t \bigg] = x_t - \eta \bigg[\nabla f(x_t) + Z(x_t; \omega_t) \bigg] \\ & \text{with } Z(x; \omega) = \nabla f_{\omega}(x) - \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) \end{split}$$

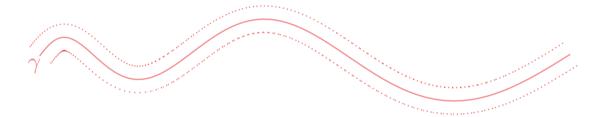
Large deviations for SGD

Consider $\gamma:[0,T]\to\mathbb{R}^d$ continuous path, $\mathbb{P}(\mathsf{SGD}\approx\gamma)=?$



Large deviations for SGD

Consider $\gamma:[0,T]\to\mathbb{R}^d$ continuous path, $\mathbb{P}(\mathsf{SGD}\approx\gamma)=?$



Proposition: SGD admits a large deviation principle as $\eta \to 0$: for any path $\gamma:[0,T] \to \mathbb{R}^d$,

$$\mathbb{P}(\textit{SGD on } [0, T/\eta] \approx \gamma) \, \approx \, \exp \left(- \frac{\mathcal{S}_T[\gamma]}{\eta} \right) \, \, \textit{where } \, \mathcal{S}_T[\gamma] = \int_0^T \!\!\! \mathcal{L}(\gamma_t, \dot{\gamma}_t) dt$$

Using tools from (Freidlin & Wentzell, 2012; Dupuis, 1988)

Cumulant generating function of $Z(x;\omega)$: $\mathcal{H}(x,v) = \log \mathbb{E}\left[e^{\langle v,Z(x;\omega)\rangle}\right]$

Lagrangian: $\mathcal{L}(x,v) = \mathcal{H}^*(x,-v-\nabla f(x)))$

Gaussian noise:

 $Z(x;\omega) \sim \mathcal{N} \big(0,\sigma^2 I_d\big)$

Cumulant generating function:

 $\mathcal{H}(x,v) = \frac{\sigma^2}{2} \|v\|^2$

Lagrangian:

 $\mathcal{L}(x,v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

Key observations:

• _____

$$\operatorname{iff} \mathcal{S}_T[\gamma] = 0$$

- The farther γ is from being a gradient flow, the ____ $\mathcal{S}_T[\gamma]$
- ullet And, as a consequence, the ____ the probability of SGD following γ

Gaussian noise:

 $Z(x;\omega) \sim \mathcal{N}\big(0,\sigma^2 I_d\big)$

Cumulant generating function:

 $\mathcal{H}(x,v) = \frac{\sigma^2}{2} \|v\|^2$

Lagrangian:

 $\mathcal{L}(x,v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \left\| \dot{\gamma}_t + \nabla f(\gamma_t) \right\|^2 \! dt$$

- γ is a trajectory of a gradient flow: $\dot{\gamma}_t = -\nabla f(\gamma_t)$ iff $\mathcal{S}_T[\gamma] = 0$
- The farther γ is from being a gradient flow, the ____ $\mathcal{S}_T[\gamma]$
- ullet And, as a consequence, the ____ the probability of SGD following γ

Gaussian noise:

 $Z(x;\omega) \sim \mathcal{N}\big(0,\sigma^2 I_d\big)$

Cumulant generating function:

 $\mathcal{H}(x,v) = \frac{\sigma^2}{2} \|v\|^2$

Lagrangian:

 $\mathcal{L}(x,v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

- γ is a trajectory of a gradient flow: $\dot{\gamma}_t = -\nabla f(\gamma_t)$ iff $\mathcal{S}_T[\gamma] = 0$
- The farther γ is from being a gradient flow, the larger $\mathcal{S}_T[\gamma]$
- ullet And, as a consequence, the ____ the probability of SGD following γ

Gaussian noise:

 $Z(x;\omega) \sim \mathcal{N} \big(0,\sigma^2 I_d\big)$

Cumulant generating function:

 $\mathcal{H}(x,v) = \frac{\sigma^2}{2} \|v\|^2$

Lagrangian:

 $\mathcal{L}(x,v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

- γ is a trajectory of a gradient flow: $\dot{\gamma}_t = -\nabla f(\gamma_t)$ iff $\mathcal{S}_T[\gamma] = 0$
- The farther γ is from being a gradient flow, the larger $\mathcal{S}_T[\gamma]$
- ullet And, as a consequence, the smaller the probability of SGD following γ

Quasi-potential

Following Kifer (1988), for any x, x'

$$B(x,x') = \inf\{\mathcal{S}_T[\gamma] \mid \gamma(0) = x, \gamma(T) = x', T \in \mathbb{N}\}$$

"B(x,x') quantifies how probable a transition from x to x' is"

- If there is a trajectory of the gradient flow joining x and x', then B(x,x')=0
- It holds:

$$B(x, x') \ge \frac{2(f(x') - f(x))}{\sigma^2}$$

Induced chain

(Conceptual) induced chain:

 $z_n = i$ if the n-th visited component is K_i (up to a small neighborhood)

Goal: show that z_n captures the long-run behavior of SGD

Two key ingredients:

Ingredient 1 The behaviour of SGD started at $x_0 \in K_i$ depends only on i.

Ingredient 2 SGD spends most of its time it near crit(f).

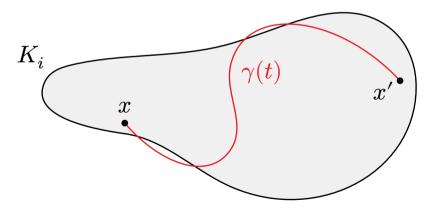
Ingredient 1

Equivalence relation:

for
$$x, x' \in \operatorname{crit}(f), \qquad x \sim x' \Leftrightarrow B(x, x') = B(x', x) = 0$$

Proposition:

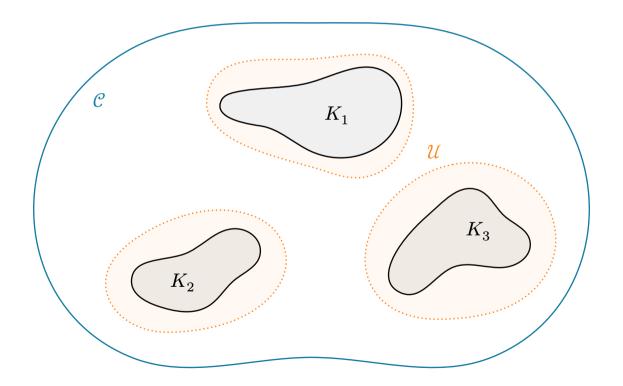
if the K_i are connected by smooth arcs, the equivalence classes of \sim are exactly $K_1,...,K_p$



Ingredient 2

Proposition: given $\mathrm{crit}(f) \subset \mathcal{U} \subset \mathcal{C}$ with \mathcal{U} open, \mathcal{C} compact, for $\eta > 0$ small enough,

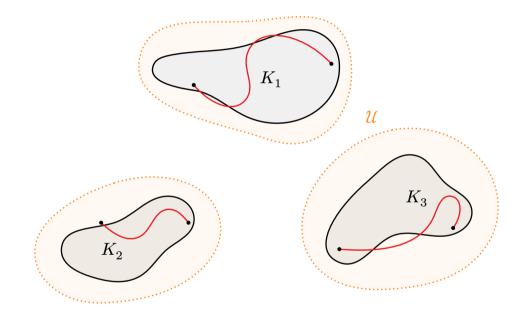
$$\forall x \in \mathcal{C}, \qquad \mathbb{P}\Big(\text{SGD started at } x \text{ reaches } \mathcal{U} \text{ in } \geq n \text{ steps} \Big) \leq e^{-\Omega\left(\frac{n}{\eta}\right)}$$



Induced chain

(Conceptual) induced chain:

 $z_n=i$ if the n-th visited component is K_i (up to a small neighborhood)



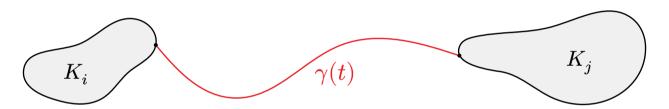
Ingredients 1 + 2 imply

The induced chain \boldsymbol{z}_n captures the long-run behavior of SGD

Transition between critical points

Given K_i , K_j critical points, what is $\mathbb{P}(SGD \text{ transitions from } K_i \text{ to } K_j)$? Involves the transition cost:

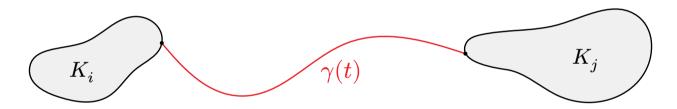
$$B_{i,j} = \inf \big\{ B\big(x_i, x_j\big) \mid x_i \in K_i, x_j \in K_j \big\} = \inf \big\{ \mathcal{S}_T[\gamma] \mid \gamma(0) = K_i, \gamma(T) = K_j, T \in \mathbb{N} \big\}$$



Transition between critical points

Given K_i , K_j critical points, what is $\mathbb{P}(\mathsf{SGD} \ \mathsf{transitions} \ \mathsf{from} \ K_i \ \mathsf{to} \ K_j)$? Involves the transition cost:

$$B_{i,j} = \inf \big\{ B\big(x_i, x_j\big) \mid x_i \in K_i, x_j \in K_j \big\} = \inf \big\{ \mathcal{S}_T[\gamma] \mid \gamma(0) = K_i, \gamma(T) = K_j, T \in \mathbb{N} \big\}$$



Proposition: Transition probability from K_i to K_i : for $\eta > 0$ small enough,

$$\mathbb{P}\big(\text{SGD transitions from } K_i \text{ to } K_j \big) \approx \exp\left(-\frac{B_{i,j}}{\eta}\right)$$

Transition graph

Now, study z_n as a Markov chain on $\{1,...,p\}$ with $\mathbb{P}(z_{n+1}=j\mid z_n=i)\approx \exp\left(-\frac{B_{i,j}}{\eta}\right)$

Transition graph: complete graph on $\{1,...,p\}$ with weights $B_{i,j}$ on $i \to j$

→ leverage exact formulas for finite-state space Markov chains

Energy of K_i :

$$E_i = \min \left\{ \sum_{j \rightarrow k \in T} B_{j,k} \mid T \text{ spanning tree pointing to } i \right\}$$

Lemma (very informal): the invariant measure of z_n is, for $\eta>0$ small enough,

$$\pi(i) \propto \approx \exp\left(-\frac{E_i}{\eta}\right)$$

Main results (more formal)

Theorem: Given : $\varepsilon > 0$, \mathcal{U}_i neighborhoods of K_i , and $\eta > 0$ small enough,

1. **Concentration on** crit(f): there is some $\lambda > 0$ s.t.

$$\mu_{\infty} \left(\bigcup_{i=1}^p \mathcal{U}_i \right) \geq 1 - e^{-\frac{\lambda}{\eta}}, \qquad \qquad \text{for some $\lambda > 0$}$$

2. Boltzmann-Gibbs distribution: for all i,

$$\mu_{\infty}(\mathcal{U}_i) \propto \exp\!\left(-\frac{E_i + \mathcal{O}(\varepsilon)}{\eta}\right)$$

3. Avoidance of non-minimizers: if K_i is not minimizing, there is K_j minimizing with $E_j < E_i$:

$$\frac{\mu_{\infty}(\mathcal{U}_i)}{\mu_{\infty}(\mathcal{U}_i)} \leq e^{-\frac{\lambda_{i,j}}{\eta}} \qquad \qquad \text{for some $\lambda_{i,j} > 0$}$$

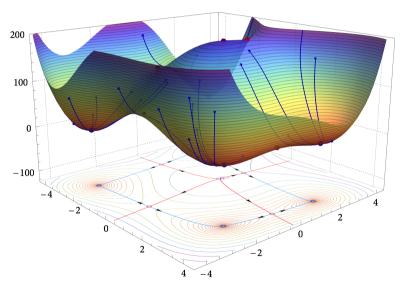
4. Concentration on ground states: given \mathcal{U}_0 neighborhood of the ground states $K_0 = \operatorname{argmin}_i E_i$

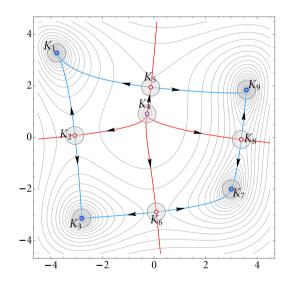
$$\mu_{\infty}(\mathcal{U}_0) \geq 1 - e^{-\frac{\lambda_0}{\eta}}, \qquad \qquad \text{for some $\lambda_0 > 0$}$$

Example: Gaussian noise

Assume $Z(x;\omega) \sim \mathcal{N} \big(0,\sigma^2 I_d \big)$

Himmelblau function

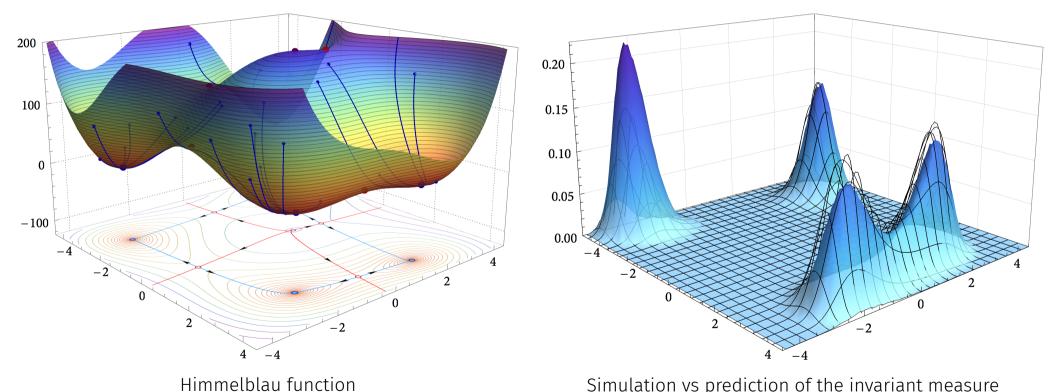




$$B_{5,1}=0; \hspace{1cm} B_{1,5}=\frac{2(f(K_5)-f(K_1))}{\sigma^2}$$

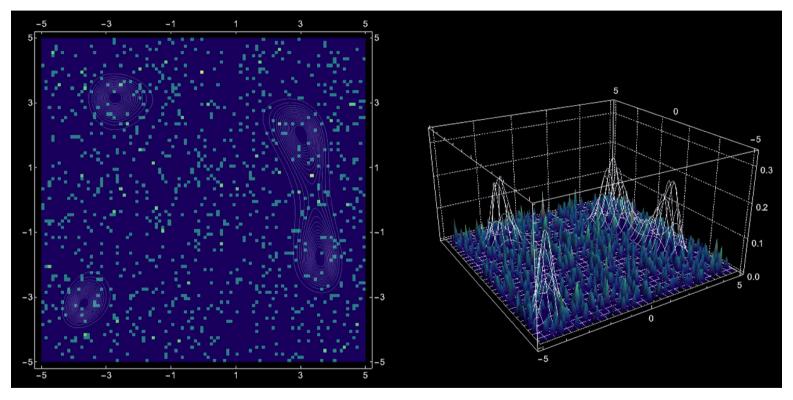
Example: Gaussian noise

If $Z(x;\omega) \sim \mathcal{N}(0,\sigma^2 I_d)$, then $E_i = \frac{2f(x_i)}{\sigma^2}$ for any $x_i \in K_i$



Simulation vs prediction of the invariant measure

Example: Gaussian noise



Evolution of the distribution of the iterates of SGD

Conclusion

- We introduce a theory of large deviation for SGD in nonconvex problems.
- We demonstrate its potential by characterizing the asymptotic distribution of SGD.

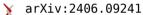


Image credit: losslandscape.com

Conclusion

- We introduce a theory of large deviation for SGD in nonconvex problems.
- We demonstrate its potential by characterizing the asymptotic distribution of SGD.
- Coming next:
 - Adaptive methods
 - Explicit bounds and time to convergence
 - Link to the geometry of the loss landscape of neural networks

Image credit: losslandscape.com