What is the Long-Run Behaviour of SGD?

A Large Deviation Analysis
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Deep learning
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Training: minimizing the loss of the model on data



Problem of interest (finite-sum)

For f : R — R smooth

1
miilei]%ldize f(x) where f(x) = - Z fi(x)

Stochastic Gradient Descent (SGD): with step-size n > 0

Liy1 = Ly — anit (z¢)

=z, —1N Vf($t)+ vfzt<xt)_vf<xt)

Zero-mean noise



Problem of interest

For f : R — R smooth

minimize f(x)
zeRY

Stochastic Gradient Descent (SGD): with constant step-size n > 0

L1 = Ly — 1 Vf(x) + Z(xy; wy)

step-size Zero-mean noise

Q: What is the asymptotic behaviour of SGD?



Convex loss




Nonconvex loss!

Image credit: losslandscape.com

Training of deep neural networks = SGD on a nonconvex loss function



Himmelblau function
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What is known?

Stochastic Gradient Descent (SGD): with constant step-size n > 0
Ty =T, —n |Vf(z,) + Z(x4;0,)

What we are not doing:
« Stochastic Approximation:

1
t0.5+s

Topg =Ty — 1 [V(xy) + Z(250,)] With g,

Convergence to local minima (Bertsekas & Tsitsiklis, 2000) but no information about which one.
« Sampling (MCMC, Langevin):

Ty =Ty — 1 Vf(z) +/2 7 N(0,0%)
Scaling of the noise differs from SGD = analysis does not carry over
« Continuous-time limit (Gradient flow, SDE):

dX, = —Vf(X,)dt ++/ n cov(Z(X,;-))dW,

Approximation of SGD (Li et al,, 2017) but only on finite time horizons



What is known?
Stochastic Gradient Descent (SGD): with constant step-size n > 0
Ty =T, —n |Vf(z,) + Z(x4;0,)

SGD with constant step-size:
« f strongly convex: SGD converges near the minimizer
« f convex: average of SGD iterates (almost) optimal
* f nonconvex:
* In average, close to criticality (Lan, 2012)

%TZ ||Vf<wt>||2] -0 =)

« With probability 1, SGD is not stuck in (strict) saddle points (Brandiere & Duflo, 1996: Mertikopoulos et al,, 2020)

E

Q: Which critical points (and which local minima) are visited the most in the long run?



New approach: large deviations

TLDR: we describe the asymptotic behaviour of SGD in nonconvex problems through a large
deviation approach

Published and presented at ICML 2024, Vienna, Austria

Outline:
1. Informal result
2. Less informal overview of the approach



On the objective function f

Regularity assumption:
crit(f) = {z : Vf(z) = 0} = {K,, K,, ...,Kp}

where K, connected components (compact)

Himmelblau function
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Asymptotic behaviour

p
Invariant measures are weak-x limit points of the mean occupation measures of the iterates of SGD:

for any set B, as n — oo,

E [% zn: 1z, € BY| ~ u_(B)

t=1

.

Invariant measure: probability measure u, such that

Ty ~ Moo — Tit1 ™ Moo

Q: Where do invariant measures of SGD concentrate?



Main results (informal)

1. Concentration near critical points:
Lo (crit(f)) =1 asn—0
2. Saddle-point avoidance:
Lo (Saddle point) « u (local minima)
3. Boltzmann-Gibbs distribution: for some energy levels E;,

oo (K)o exp(—%)

4. Ground state concentration: there is K; that minimizes E; such that,

poo (K ) > 1 asn—0



Challenges and techniques

« No known approach to analyze the asymptotic distribution of SGD on non-convex problems

» We leverage large deviation theory and the theory of random perturbations of dynamical systems,
— Estimate the probability of rare events, such as SGD escaping a local minima

« We adapt the theory of random perturbations of dynamical systems with two main challenges:
a) Lack of compactness
b) Realistic noise models (finite sum)
— Remedy these issues by refining the analysis

References
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of dynamical systems. Springer TG
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Objective and noise assumptions

Objective assumptions:

* f B-smooth, i.e. Vf is B-Lipschitz

* fiscoercive: limy, . f(z) = lim, . [Vf(2)] = +oo

Noise assumptions:

* EZ(z;w)] =0, cov(Z(z;w)) > 0, Z(z;w) = O(||z||) almost surely

* Z(z;w) is o sub-Gaussian:

2

logE[e<v,Z(w;w)>] < 07”,0”2

Example (Finite-sum):
Consider f(z) =2 3" f,(z) + 3|z|* with £, Lipschitz and 8-smooth.
SGD :

Vi (z) + Az,

Liy1 =Ty — 7

=z, — anf(:Bt) + Z(%W’t)]

With Z(z;10) = V1, (@) ~ 3 Vi(x)



Large deviations for SGD

Consider v : [0, T] — R? continuous path, P(SGD ~ v) =7



Large deviations for SGD

Consider v : [0, T] — R? continuous path, P(SGD ~ v) =7

r

Proposition: SGD admits a large deviation principle as n — 0: for any path v : [0,T] — R¢,

T

P(SGD on [0,T/n] ~ v) ~ exp (—STUM> where Sr[v] = /ﬁ(%,%)dt
0

\.

Using tools from (Freidlin & Wentzell, 2012; Dupuis, 1988)
Cumulant generating function of Z(z;w): H (z,v) = logE[el*Z@w)]
Lagrangian: L(x,v) = H*(x,—v— Vf(x)))



LDP in the Gaussian case

Gaussian noise: Z(z;w) ~ N(0,0%1,)
Cumulant generating function: H(x,v) = "72||v||2
Lagrangian: £L(z,v) = ||v+Z;‘2(x)||

Action functional:

IR
Srbl =507 | I+ ViGOIat
0

Key observations:
. iff S;[v] =0



LDP in the Gaussian case

Gaussian noise:
Cumulant generating function:
Lagrangian:

Action functional:

Key observations:

Z(z;w) ~ N(0,0%1,)
H (z,v) = %ol

L(z,v) = LY@

202
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« v is a trajectory of a gradient flow: 4, = =V f(y,) Iff Sp[v] =0

e The farther v Is from being a gradient flow, the

« And, as a consequence, the



LDP in the Gaussian case

Gaussian noise:
Cumulant generating function:
Lagrangian:

Action functional:

Key observations:

Z(z;w) ~ N(0,0%1,)
H(z,v) = % |v[’

L(z,v) = LY@
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« v is a trajectory of a gradient flow: 4, = =V f(y,) Iff Sp[v] =0

« The farther v is from being a gradient flow, the larger S, [v]

« And, as a consequence, the

the probability of SGD following ~



LDP in the Gaussian case

Gaussian noise:
Cumulant generating function:
Lagrangian:

Action functional:

Key observations:

Z(z;w) ~ N(0,0%1,)
H(z,v) = % |v[’

L(z,v) = LY@

202

IR
Srbl =507 | I+ ViGOIat
0

« v is a trajectory of a gradient flow: 4, = =V f(y,) Iff Sp[v] =0

« The farther v is from being a gradient flow, the larger S, [v]

« And, as a consequence, the smaller the probability of SGD following ~



Quasi-potential

Following Kifer (1988), for any z, =’
B(z,z") =inf{Sp[y] | v(0) = z,y(T) =", T € N}

“B(x,x") quantifies how probable a transition from z to z” is”

Key observations:
« |f there is a trajectory of the gradient flow joining x and z’, then B(x,x") =0
* |t holds:




Induced chain

Recall:

crit(f) = {z : Vf(z) = 0} = {K,, K,, ..., K,} with K, connected components
(Conceptual) induced chain:
z, =1 if the n-th visited component is K, (up to a small neighborhood)
Goal: show that z,, captures the long-run behavior of SGD

Two key ingredients:
Ingredient 1 The behaviour of SGD started at z, € K; depends only on i.

Ingredient 2 SGD spends most of its time it near crit(f).



Ingredient 1

Equivalence relation:
for z,2” € crit(f), r~z < B(x,z')=B(z',x) =0

Proposition:
if the K, are connected by smooth arcs, the equivalence classes of ~ are exactly K, ...

SN

X

“Behaviour of SGD started at x ~ Behaviour of SGD started at z’”



Ingredient 2

7

Proposition: given crit(f) C /[ C € with Il open, € compact, for n > 0 small enough,

Vx € C, P(SGD started at x reaches I/ in > n steps) < e_Q(

n

n

)

= D




Induced chain

(Conceptual) induced chain:
z, =i if the n-th visited component is K, (up to a small neighborhood)

Ingredients 1+ 2 imply

The induced chain z,, captures the long-run behavior of SGD



Transition between critical points

Given K;, K; critical points, what is P(SGD transitions from K to K;) ?
Involves the transition cost:

B, ; = inf{B(z;,z;) | z; € K;,z; € K;} = inf{87[y] | v(0) = K;,~(T) = K;,T € N}

« v(t)



Transition between critical points

Given K;, K; critical points, what is P(SGD transitions from K to K;) ?
Involves the transition cost:

B, ; = inf{B(z;,z;) | z; € K;,z; € K;} = inf{87[y] | v(0) = K;,~(T) = K;,T € N}

1

v(t)

(

Proposition: Transition probability from K, to K: for n > 0 small enough,

B. .
P(SGD transitions from K; to K ;) ~ exp (—#)
n




Transition graph

Now, study z, as a Markov chain on {1,...,p} with P(z,,, =4 | 2z, =i) ~ exp<_%>

Transition graph: complete graph on {1, ..., p} with weights B, ; oni — j

— leverage exact formulas for finite-state space Markov chains
Energy of K:

E, = min{ > B;, | T spanning tree pointing to z}

J—keT

-
Lemma (very informal): the invariant measure of z, is, for n > 0 small enough,

(i) o exp( )




Main results (more formal)

r

Theorem: Given : € > 0, U, neighborhoods of K,, and n > 0 small enough,

1. Concentration on crit(f): there is some X\ > 0 s.t.

Moo< lel[i) 21—6_%, forsome A >0

2. Boltzmann-Gibbs distribution: for all s,

Hoo (1) ox exp( — 242 )

3. Avoidance of non-minimizers: if K, is not minimizing, there is K; minimizing with E; < E;:

poolly) e forsome X, . >0
Hoo (uj) ; b7

4. Concentration on ground states: given U, neighborhood of the ground states K, = argmin, E,

o)

Poo(Up) >1—€ | forsome Ay > 0




Example: Gaussian noise

Assume Z(z;w) ~ N(0,0°1,)

Himmelblau function
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Example: Gaussian noise

Assume Z(z;w) ~ N(0,0°1,)

1

Himmelblau function

2f(z.
= —f(?') forany z; € K,
o

27



Example: Gaussian noise

Evolution of the distribution of the iterates of SGD


videos/MeasureEvolution.mp4
videos/MeasureEvolution.mp4

1an noise

Example: Gauss
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Conclusion

« We introduce a theory of large deviation for SGD in nonconvex problems.
« We demonstrate its potential by characterizing the asymptotic distribution of SGD.
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Conclusion

« We introduce a theory of large deviation for SGD in nonconvex problems.
« We demonstrate its potential by characterizing the asymptotic distribution of SGD.

« Coming next:
« Adaptive methods
« Explicit bounds and time to convergence
» Link to the geometry of the loss landscape of neural networks
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