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Training in machine learning = stochastic gradient methods
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Different domains, same training method = stochastic gradient methods



Nonconvex loss!

Image credit: losslandscape.com

Training of deep neural networks = stochastic gradient methods on a nonconvex loss function



Core focus: SGD

For f : R — R loss of model with parameters z,

minimize f(z) where f(z) =E_[f(z;w)]

r€R4

Stochastic Gradient Descent (SGD): with constant step-size n > 0

Liy1 =Ty — 1 Vf(x) + Z(xy;wy)

step-size zero-mean noise
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Stochastic Gradient Descent (SGD): with constant step-size n > 0
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Finite-sum problems / Empirical risk minimization:
For f(x) = %2;1 f;(x), at each iteration, sample i,,

Lyy1 = Ty — nqu:t (z¢)

:wt—n

Vi(z,)+ Vfit (z¢) — V f(zy) ]

Zero-mean noise
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Core focus: SGD

For f : R — R loss of model with parameters z,

minimize f(z) where f(z) =E_[f(z;w)]

r€R4

Stochastic Gradient Descent (SGD): with constant step-size n > 0

Liy1 =Ty — 1 Vf(x) + Z(xy;wy)

step-size zero-mean noise

Q: What is the asymptotic behavior of SGD?
— Q1: Where are the iterates most likely to go?

— Q2: How much time to get there?



What is known?

Stochastic Gradient Descent (SGD): with constant step-size n > 0
L1 =Ty — 1 vf(%) + Z(xt;wt)
What we are not doing:

 Stochastic Approximation:

1

Ty =2y — [V I(x,) + Z(2450)] With n, o 10512
Convergence to local minima (Bertsekas & Tsitsiklis, 2000) but can’t get no information about which one.

« Sampling (MCMC, Langevin): to sample from e=f

Ty =2, — NV f(ze) + /20N (0,02)
Convergence of the distribution of the iterates to e~/ (Raginsky et al,, 2017) but scaling of the noise differs from SGD
= analysis does not carry over
« Continuous-time limit (Gradient flow, SDE):

dX, = =V [f(Xy)dt + \/77 cov(Z(Xy;-))dW,

Provable approximation of SGD (Li et al., 2017) but only on finite time horizons



What is known?
Stochastic Gradient Descent (SGD): with constant step-size n > 0
Ty =T, — 0| Vf(zy) + Z(245w0)

SGD with constant step-size:
« f strongly convex: SGD converges near the minimizer (Polyak, 1987)
« f convex: average of SGD iterates (almost) optimal (Polyak & Juditsky, 1992)
« f nonconvex:
* In average, close to criticality (Lan, 2012)

E

%TZS ||Vf<ast>||2] ~0(—=)

« With probability 1, SGD is not stuck in (strict) saddle points (Brandiere & Duflo, 1996; Mertikopoulos et al., 2020)

— Q1: Which critical points (and which local minima) are visited most often in the long run?

— Q2: How much time to get to the global minimum?



New approach: large deviations

TLDR: we describe the asymptotic behavior of SGD in nonconvex problems through a large deviation
approach

Outline:

1. Introduction

2. Asymptotic distribution of SGD
3. Global convergence time of SGD

Based on our papers:
- What is the long-run behavior of SGD? A large deviation analysis. ICML 2024
- The global convergence time of SGD in non-convex landscapes. ICML 2025


https://arxiv.org/abs/2406.09241
https://arxiv.org/abs/2406.09241
https://arxiv.org/abs/2503.16398
https://arxiv.org/abs/2503.16398

On the objective function f

Regularity assumption:
crit(f) == {x : Vf(z) =0} = {K, K,, ..., K, }
where K, connected components (compact)

— Avoids pathological cases, realistic in practice

Himmelblau function




Asymptotic distribution of SGD

Stochastic Gradient Descent (SGD): with constant step-size n > 0

Lig1 = Ly — n[Vf(xt) + Z(zy; wt)]

r

Invariant measures are limit points of the mean occupation measures of the iterates of SGD:

for any set B of interest, as n — o,

1 n
E [— > Uz, € BY| ® oo (B)
n t=1
Invariant measure: probability measure u ., such that
Ly ~ P = ‘/Et+1 ~ Moo

Q1: Where do invariant measures of SGD concentrate?



Main results (informal)

Recall: .
crit(f) == {z : Vf(z) = 0} = {K|, K,, ..., K, } with K; connected components

1. Concentration near critical points:
poo(crit(f)) =1 asn—0
2. Saddle-point avoidance:
Lo (Saddle point) < p(local minima)
3. Boltzmann-Gibbs distribution: for some energy levels E;,

oo (K) ox exp (—’%)

4. Ground state concentration: there is K; that minimizes E; such that,

poo(K;)) > 1 asn—0



1an noise

(J.)) ~ N(O,Uz_[d)
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Global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with small margin § > 0,
7 = min{t € N | dist(z,, argmin f) < J}

Q2: What is E_[r] for SGD started at z?



Main result (informal)

Global convergence time of SGD: starting at z, the time 7 to reach argmin f satisfies

E, [r] ~ p(y)

where J(z) energy of SGD starting at z, for n, § small enough

Key quantity J (x): geometric measure of problem’s hardness, it captures

« The difficulty of the loss landscape
« The statistics of the noise



Challenges and techniques

« No known approach to analyze the asymptotic distribution of SGD on non-convex problems

« We leverage large deviation theory and the theory of random perturbations of dynamical systems,
— Estimate the probability of rare events, such as SGD escaping a local minima

« We adapt the theory of random perturbations of dynamical systems with three main challenges:
a) Lack of compactness
b) Realistic noise models (finite sum)
c) Discrete-time dynamics
— Remedy these issues by refining the analysis

References
Freidlin, M. |, & Wentzell, A. D., 2012. Random Mkl ridn
perturbations of dynamical systems. Springer T )
Kifer, Y., 1988. Random perturbations of dynamical Perturbations Random _
Of Dynamlcal Perturbations of

Dynamical Systems

systems. Birkhauser Systems

Third Edition

@ Springer

Birkhauser


https://link.springer.com/book/10.1007/978-3-642-25847-3
https://link.springer.com/book/10.1007/978-3-642-25847-3
https://link.springer.com/book/10.1007/978-3-642-25847-3
https://link.springer.com/book/10.1007/978-3-642-25847-3
https://link.springer.com/book/10.1007/978-1-4615-8181-9
https://link.springer.com/book/10.1007/978-1-4615-8181-9
https://link.springer.com/book/10.1007/978-1-4615-8181-9
https://link.springer.com/book/10.1007/978-1-4615-8181-9

Objective and noise assumptions

Recall: we assume
crit(f) :={z : Vf(z) =0} = {K,K,, ..., K, }

where K, connected components (compact)
Objective assumptions:
» Vfis Lipschitz-continuous

® f IS coercive: llm"wH_)OO f(il?) = hm“x"_mo ||Vf(33)|| = +00

Noise assumptions:

* E[Z(z;w)] =0, cov(Z(z;w)) = 0, Z(z;w) = O(||z||) almost surely

» Z(x;w) IS o sub-Gaussian:

logE[e(v,Z(m;w»] < %2||U||2

— Realistic in the context of deep learning (normalization layers, weight decay, GeLU/Swish activations, etc.)



Large deviations for discrete-time SGD

Consider v : [0,T] — R? continuous path in parameter space, P(SGD ~ ) = ?



Large deviations for discrete-time SGD

Consider v : [0,T] — R? continuous path in parameter space, P(SGD ~ ) = ?

I

Proposition: SGD admits a large deviation principle as n — 0: for any path v : [0,T] — R¢,

5 T
P(SGD on [0, T /n] =~ v) ~ exp (— Tm) where Sr[v] /£ (Y, Ye)d
N 0
Using tools from (Freidlin & Wentzell, 2012; Dupuis, 1988)
Cumulant generating function of Z(z; w): H (z,v) = log E[el*Z(@w)]

Lagrangian: L(x,v) = H*(x,—v -V f(z)))



LDP in the Gaussian case

Gaussian noise: Z(z;w) ~ N(0,0%1,)
Cumulant generating function: H(x,v) = %2||v||2
Lagrangian: £L(z,v) = %

Action functional:

202

T
Splyl = = / 0 + V£ (3 |2dt
0



LDP in the Gaussian case

Gaussian noise: Z(z;w) ~ N(0,0%1,)
Cumulant generating function: H(x,v) = %2||v||2
Lagrangian: £L(z,v) = %

Action functional:

T

Srbl =57 | I+ ViGOIat
0

Key observations:

* v is a trajectory of a gradient flow trajectory: 4, = =V f(y,) iff Sp[7] =0

» The farther ~ is from being a gradient flow, the larger S, [v]

« And, as a consequence, the smaller the probability of SGD following ~:

S Tn[v] )

P(SGD on [0,T/n] ~ 7v) ~ exp (—



Transition between critical points

Given K;, K critical points, what is P(SGD transitions from K; to K) ?



Transition between critical points

Given K;, K critical points, what is P(SGD transitions from K; to K) ?
Involves the transition cost:
B; ; = inf{S7[] | v(0) = K;,+(T) = K;, T > 0}

v(t)

Key observations:
- If there is a trajectory of the gradient flow joining K; and K, then B, ; =0
» We can show:

B > 2K 1K)

ivj - 0‘2



Transition between critical points

Given K;, K critical points, what is P(SGD transitions from K; to K) ?

Involves the transition cost:

B; ; = inf{S7[] | v(0) = K;,+(T) = K;, T > 0}

v(t)

Key observations:
- If there is a trajectory of the gradient flow joining K; and K, then B, ; =0
» We can show:

r

Proposition: Transition probability from K, to K;: for n > 0 small enough,

P(SGD transitions from K; to K;) ~ exp (—

B, ;

n

)




Restriction to critical components

Recall:
crit(f) == {2 : Vf(z) = 0} = {K|,K,, ..., K, } with K; connected components

Main idea of the proof: Restrict SGD to a chain visiting only critical components

— studies a chain on {1, ...,p}



Transition graph

Study SGD as a Markov chain on {1, ...,p} with transitions l/f \y
B47 1,4
B; ) »//34,2 [ Bm\

P(SGD transitions from K; to K;) ~ exp (——"7
n

Transition graph: complete graph on {1,...,p} with weights B; ; on i — j

— leverage exact formulas for finite-state space Markov chains



Energy

Using exact formulas for finite-state space Markov chains:

( )

Lemma (very informal): the invariant measure of SGD restricted to { K, ..., Kp} is, forp > 0 small enough,

(i) o exp (—%)

Energy of K{ } 4/( \y

E, =min< Y  B;, | T spanning tree pointing to i

(]
Jj—keT




Main results (more formal)

Recall:
crit(f) = {z : Vf(z) = 0} = {K}, K,, ..., K, } with K; connected components

r

Theorem: Given : £ > 0, U, neighborhoods of K,, and n > 0 small enough,

1. Concentration on crit(f): there is some XA > 0 s.t.
poo (U u.)zl—e—%, for some X > 0

=1 1t
2. Boltzmann-Gibbs distribution: for all i,
E,+0
froo (U) ox exp(—%@)
3. Avoidance of non-minimizers: if K, is not minimizing, there is K; minimizing with E; < E;;:

Hoo (u])

4. Concentration on ground states: given U, neighborhood of the ground states K, = argmin, E,

forsome A, ; >0

A

Poo(Upy) > 1 — e, forsome Ay >0
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1an noise

Example: Gauss

Assume Z(z;w) ~ N (0,0%1,)




1an noise

Example: Gauss
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Example: Gaussian noise

Evolution of the distribution of the iterates of SGD, initialized at random


videos/MeasureEvolution.mp4

Gaussian noise: general case
« Assume Z(z;w) ~ N(0,0%1,)

Boltzmann-Gibbs distribution: for all s,

by = 2f(§i> and Hoo (K;) ~ exp <_2f<2Ki))

o




Gaussian noise: general case
« Assume Z(z;w) ~ N(0,0%1,)

Boltzmann-Gibbs distribution: for all s,

b, = 2f(§i> and  pg (K;) ~ exp <_2f<2Ki))
o o“n
« Assuming Z(z;w) ~ N (0,02 f(z)I,)
— Relevant for deep learning, eg (Mori et al., 2022)
Power-law Gibbs distribution: for all i,
2log f(K; —2
g =28 ang (k) ~ f(E)

o



Minimizers of the energy = minimizers of the function?

LAY,



Minimizers of the energy = minimizers of the function?




Minimizers of the energy = minimizers of the function?

If o1 small enough, E; < E, and so u_ (z;) < p..(x5) even if z; is not a global minimizer!

— Question of the concentration of SGD remains intricate



Partial Conclusion (first part)

« We obtained a characterization of the invariant measure of SGD
« The relative weights of critical components depends on both the loss landscape and the noise structure

 Built on our large deviation framework to analyze the long-term behavior of SGD




Recall: global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with some small margin § > 0,
7 = min{t € N | dist(z,, argmin f) < J}



Recall: global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with some small margin § > 0,
7 = min{t € N | dist(z,, argmin f) < J}

Global convergence time of SGD: starting at z, the time 7 to reach argmin f satisfies

exp(%) < E,[7 < exp(%)

where J(x) “energy” of SGD starting at x, for any e > 0 and n, § > 0 small enough



Definition of J(z) K/ /\Y

Transition graph: complete graph on {0, ..., N — 1} with weights B, ;0ni — j //

Energy of K, = argmin f: K% By s /
B3,2 2,
\ B /BI;
Ey = min

Y B, | T spanning tree pointing to 0
j—keT

Energy of pruning K;:

J(i -+ 0) = min{ Y B, | T spanning tree pointing to 0 with an edge from i to 0 removed}
J—keT

Energy of K, relative to K :

J(i) = Ey — J(i + 0)
Energy of K, relative to x:

where B(z,1) cost of the transition from z to K;



J (z): measure of the hardness of the problem

E, [r] ~ p(y)

General fact: J(x)=0 forallz = all local minima of f are global

/() "3 /
J(z) >0 / \X \



J (z): measure of the hardness of the problem

E, [r] ~ p(y)

General fact: J(x)=0 forallz = all local minima of f are global

J(z) =0 M\ /X\ / \ /



J (z): measure of the hardness of the problem

E, [r] ~ p(y)

General fact: J(x)=0 forallz = all local minima of f are global

— neural networks when width > # data points + 1 (e.g. Nguyen et al,, 2018; Nguyen et al., 2019)

T(@) =0 fm\ /X\ / \ /



Gaussian bounds
For Gaussian noise Z(z;w) ~ N (0,0%1,),

Gaussian bound:

J(z) <

2 x #{bad local minima} x {max. saddle - min. bad local min.}

o2

Ty < 22X lz) = flz) 7 /\ / \ /




Gaussian bounds

For Gaussian noise Z(z;w) ~ N (0,0%1,),

Gaussian bound:

J(z) <

2 x #{bad local minima} x {max. saddle - min. bad local min.}
2

o

— can be bounded as a function of width / depth of neural networks (e.g. Neuyen et al,, 2021)

Ty < 222X U = f@a) e / \/ \ /




Power-law Gaussian bounds

For Gaussian noise Z(z;w) ~ N (0,02 f(z)I,)

Power-law Gaussian bound:

J(x) <

2 x g{bad local minima} x {log max. saddle - log min. bad local min.}

o2

J(a) < 22X 2008 F (@) ~ log f(zy)) e / \/ \ /




Example: Three Humps
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Three Humps: Simulation

For Z(z;w) ~ N(0,0%1,),

we predict

Convergence Time (log scale)

0.0067 0.0019 0.0011

0.0008

Step—size (inverse scale)
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Three Humps: Simulation

For Z(z;w) ~ N (0,02 f(z)I,),

we predict

J(x) =

log T ~

_ 2(log f(z,) — log f(z,))

o

2(log f () —log f(z,))

2

o

2

X_

1
n

0.0067 0.0019 0.0011

0.0008

Convergence Time (log scale)

Step—size (inverse scale)
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1102
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Partial Conclusion (second part)

« We presented a characterization of the global convergence time of SGD
» The key quantity J(x) captures the interplay between the loss landscape and the noise structure
 Built on our large deviation framework to analyze the long-term behavior of SGD

0.0067 0.0019 0.0011 0.0008

10°
108
107
10°
10°
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103

Convergence Time (log scale)
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10!
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4 Step—size (inverse scale)



Conclusions and perspectives

» Provided answers to two fundamental questions about SGD in nonconvex problems,

* Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.

« Answered these questions by developing a novel large deviation framework to analyze the long-term
behavior of SGD.

0.0067 0.0019 0.0011 0.0008

10°
108
107
10°
10°
10
10°

10

Convergence Time (log scale)
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10°

Step—size (inverse scale)



Conclusions and perspectives

» Provided answers to two fundamental questions about SGD in nonconvex problems,

* Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.

« Answered these questions by developing a novel large deviation framework to analyze the long-term
behavior of SGD.

« Coming next:
« Analysis and design of adaptive methods
« Understanding the implicit bias of SGD

0.0067 0.0019 0.0011 0.0008
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108
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10

Convergence Time (log scale)

10!

10°

Step—size (inverse scale)



Generic bounds for energy

If K,. = argmin f,
sup{E@-* _ B} < 2 x #{bad local minima} x {m2ax. saddle - min. bad local min.}

JFi* Oothers

~ 2{depth of global min.}

2
o

2
others

) /\/\/

where o2 “upper bound” on the noise at K;. and o “lower bound” on the noise at other components



Quasi-potential

Following Kifer (1988), for any z, =’
B(,2) = inf{S7[1] | 1(0) = #,7(T) = «/,T € N}

“B(x,z") quantifies how probable a transition from z to z’ is”

Key observations:
* If there is a trajectory of the gradient flow joining x and z’, then B(z,z’) =0
» We can show:

2(f(z") — f(z))

B(z,z’) > =




Induced chain
Recall:

crit(f) == {x : Vf(z) = 0} = {K}, K,, ..., K, } with K, connected components
(Conceptual) induced chain:
z, =i if the n-th visited component is K, (up to a small neighborhood)
Goal: show that z,, captures the long-run behavior of SGD

Two key ingredients:
Ingredient 1 The behavior of SGD started at z, € K; depends only on i.

Ingredient 2 SGD spends most of its time it near crit(f).



Ingredient 1

Equivalence relation:
for x,z" € crit(f), x~z < B(x,x')=B(z',x) =0

Proposition:
if the K, are connected by smooth arcs, the equivalence classes of ~ are exactly Ky, ...

AN

“Behaviour of SGD started at = ~ Behaviour of SGD started at z’”



Ingredient 2

Proposition: given crit(f) C I/ C € with I/ open, € compact, for n > 0 small enough,

Ve e, IP(SGD started at x reaches !/ in > n steps) < 6—9(%)




Induced chain

(Conceptual) induced chain:
z, =i if the n-th visited component is K, (up to a small neighborhood)

Ingredients 1+ 2 imply

The induced chain z,, captures the long-run behavior of SGD



Example: Back to Himmelblau
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Divergence between iterates and Gibbs
Z(z;w) ~ N(0,0%1,)
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Divergence between iterates and Power-law
Z(z;w) ~ N(0,0%f(2)1,)



No spurious local minima: Simulation

Consider a non-convex function (with maxima and saddles) but no spurious local minima:

0.0067 0.0022 0.0013 0.0009 0.0007 0.0006 0.0005

— Theory 10°
We predict E =0and thus .. Data 108
) 107
].Og'T = CSt ED 106
e 10t
5
50 10°
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Step—size (inverse scale)



Attempt with SDE

1. Approximate SGD by an SDE:
dX, = -V f(X,)dt + /nX(X,)dW,

2. Combine with the exponential convergence of the SDE to its invariant measure

Xt_>:uoo

t—o0

But: convergence speed of the SDE is not fast enough to compensate for the approximation error!
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