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Himmelblau function

𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2

Himmelblau function
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videos/sgd.mp4


Training in machine learning = stochastic gradient methods

Image credit: Meta AI

Image credit: Vaswani et al., 2017

Different domains, same training method = stochastic gradient methods
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Nonconvex loss!

Image credit: losslandscape.com

Training of deep neural networks = stochastic gradient methods on a nonconvex loss function
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Core focus: SGD

For 𝑓 : ℝ𝑑 → ℝ loss of model with parameters 𝑥,

minimize
𝑥∈ℝ𝑑

𝑓(𝑥) where 𝑓(𝑥) = 𝔼𝜔[𝑓(𝑥; 𝜔)]

Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
step-size

[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)
zero-mean noise

]
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]

Finite-sum problems / Empirical risk minimization:

For 𝑓(𝑥) = 1
𝑛 ∑𝑛

𝑖=1 𝑓𝑖(𝑥), at each iteration, sample 𝑖𝑡,

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇𝑓𝑖𝑡
(𝑥𝑡)

= 𝑥𝑡 − 𝜂[∇𝑓(𝑥𝑡) + ∇𝑓𝑖𝑡
(𝑥𝑡) − ∇𝑓(𝑥𝑡)

zero-mean noise

]
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Q: What is the asymptotic behavior of SGD?
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Core focus: SGD

For 𝑓 : ℝ𝑑 → ℝ loss of model with parameters 𝑥,

minimize
𝑥∈ℝ𝑑

𝑓(𝑥) where 𝑓(𝑥) = 𝔼𝜔[𝑓(𝑥; 𝜔)]

Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
step-size

[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)
zero-mean noise

]

Q: What is the asymptotic behavior of SGD?

→ Q1: Where are the iterates most likely to go?

→ Q2: How much time to get there?
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What is known?
Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)]

What we are not doing:
• Stochastic Approximation:

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)] with 𝜂𝑡 ∝ 1
𝑡0.5+𝜀

Convergence to local minima (Bertsekas & Tsitsiklis, 2000) but can’t get no information about which one.
• Sampling (MCMC, Langevin): to sample from 𝑒−𝑓

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇𝑓(𝑥𝑡) + √2𝜂𝒩︀(0, 𝜎2)

Convergence of the distribution of the iterates to 𝑒−𝑓  (Raginsky et al., 2017) but scaling of the noise differs from SGD
⇒ analysis does not carry over

• Continuous-time limit (Gradient flow, SDE):

𝑑𝑋𝑡 = −∇𝑓(𝑋𝑡)𝑑𝑡 + √𝜂 cov(𝑍(𝑋𝑡; ·))𝑑𝑊𝑡

Provable approximation of SGD (Li et al., 2017) but only on finite time horizons
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What is known?

Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)]

SGD with constant step-size:
• 𝑓  strongly convex: SGD converges near the minimizer (Polyak, 1987)
• 𝑓  convex: average of SGD iterates (almost) optimal (Polyak & Juditsky, 1992)
• 𝑓  nonconvex:

• In average, close to criticality (Lan, 2012)

𝔼[ 1
𝑇

∑
𝑇 −1

𝑡=0
‖∇𝑓(𝑥𝑡)‖

2] = 𝒪︀( 1√
𝑇

)

• With probability 1, SGD is not stuck in (strict) saddle points (Brandière & Duflo, 1996; Mertikopoulos et al., 2020)

→ Q1: Which critical points (and which local minima) are visited most often in the long run?

→ Q2: How much time to get to the global minimum?
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New approach: large deviations

TLDR: we describe the asymptotic behavior of SGD in nonconvex problems through a large deviation 
approach

Outline:
1. Introduction
2. Asymptotic distribution of SGD
3. Global convergence time of SGD

Based on our papers:
- What is the long-run behavior of SGD? A large deviation analysis. ICML 2024
- The global convergence time of SGD in non-convex landscapes. ICML 2025
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On the objective function 𝑓

Regularity assumption:

crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝}

where 𝐾𝑖 connected components (compact)

→ Avoids pathological cases, realistic in practice
Himmelblau function
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Asymptotic distribution of SGD
Stochastic Gradient Descent (SGD): with constant step-size 𝜂 > 0

𝑥𝑡+1 = 𝑥𝑡 − 𝜂[∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)]

Invariant measures are limit points of the mean occupation measures of the iterates of SGD:

for any set ℬ︀ of interest, as 𝑛 → ∞,

𝔼[ 1
𝑛

∑
𝑛

𝑡=1
1{𝑥𝑡 ∈ ℬ︀}] ≈ 𝜇∞(ℬ︀)

Invariant measure: probability measure 𝜇∞ such that
𝑥𝑡 ∼ 𝜇∞ ⇒ 𝑥𝑡+1 ∼ 𝜇∞

Q1: Where do invariant measures of SGD concentrate?
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Main results (informal)

Recall:
crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝} with 𝐾𝑖 connected components

1. Concentration near critical points:

𝜇∞(crit(𝑓)) → 1 as 𝜂 → 0

2. Saddle-point avoidance:

𝜇∞(saddle point) ≪ 𝜇∞(local minima)

3. Boltzmann-Gibbs distribution: for some energy levels 𝐸𝑖,

𝜇∞(𝐾𝑖) ∝ exp(−𝐸𝑖
𝜂

)

4. Ground state concentration: there is 𝐾𝑖0
 that minimizes 𝐸𝑖 such that,

𝜇∞(𝐾𝑖0
) → 1 as 𝜂 → 0
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Global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with small margin 𝛿 > 0,
𝜏 = min{𝑡 ∈ ℕ | dist(𝑥𝑡, argmin 𝑓) ≤ 𝛿}

Q2: What is 𝔼𝑥[𝜏 ] for SGD started at 𝑥?
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Main result (informal)

Global convergence time of SGD: starting at 𝑥, the time 𝜏  to reach argmin 𝑓  satisfies

𝔼𝑥[𝜏 ] ≈ exp(𝐽(𝑥)
𝜂

)

where 𝐽(𝑥) energy of SGD starting at 𝑥, for 𝜂, 𝛿 small enough

Key quantity 𝐽(𝑥): geometric measure of problem’s hardness, it captures

• The difficulty of the loss landscape
• The statistics of the noise
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Challenges and techniques

• No known approach to analyze the asymptotic distribution of SGD on non-convex problems

• We leverage large deviation theory and the theory of random perturbations of dynamical systems,
→ Estimate the probability of rare events, such as SGD escaping a local minima

• We adapt the theory of random perturbations of dynamical systems with three main challenges:
a) Lack of compactness
b) Realistic noise models (finite sum)
c) Discrete-time dynamics
→ Remedy these issues by refining the analysis

References
Freidlin, M. I., & Wentzell, A. D., 2012. Random 
perturbations of dynamical systems. Springer

Kifer, Y., 1988. Random perturbations of dynamical 
systems. Birkhäuser
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Objective and noise assumptions
Recall: we assume

crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝}

where 𝐾𝑖 connected components (compact)

Objective assumptions:

• ∇𝑓  is Lipschitz-continuous

• 𝑓  is coercive: lim‖𝑥‖→∞ 𝑓(𝑥) = lim‖𝑥‖→∞‖∇𝑓(𝑥)‖ = +∞

Noise assumptions:

• 𝔼[𝑍(𝑥; 𝜔)] = 0, cov(𝑍(𝑥; 𝜔)) ≻ 0, 𝑍(𝑥; 𝜔) = 𝑂(‖𝑥‖) almost surely

• 𝑍(𝑥; 𝜔) is 𝜎 sub-Gaussian:

log 𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩] ≤ 𝜎2

2 ‖𝑣‖2

→ Realistic in the context of deep learning (normalization layers, weight decay, GeLU/Swish activations, etc.)
15



Large deviations for discrete-time SGD

Consider 𝛾 : [0, 𝑇 ] → ℝ𝑑 continuous path in parameter space, ℙ(SGD ≈ 𝛾) = ?

𝛾
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Large deviations for discrete-time SGD

Consider 𝛾 : [0, 𝑇 ] → ℝ𝑑 continuous path in parameter space, ℙ(SGD ≈ 𝛾) = ?

𝛾

Proposition: SGD admits a large deviation principle as 𝜂 → 0: for any path 𝛾 : [0, 𝑇 ] → ℝ𝑑,

ℙ(SGD on [0, 𝑇 /𝜂] ≈ 𝛾) ≈ exp(−𝒮︀𝑇 [𝛾]
𝜂

) where 𝒮︀𝑇 [𝛾] = ∫
𝑇

0
ℒ︀(𝛾𝑡, ̇𝛾𝑡)𝑑𝑡

Using tools from (Freidlin & Wentzell, 2012; Dupuis, 1988)

Cumulant generating function of 𝑍(𝑥; 𝜔): ℋ︀(𝑥, 𝑣) = log 𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩]

Lagrangian: ℒ︀(𝑥, 𝑣) = ℋ︀∗(𝑥, −𝑣 − ∇𝑓(𝑥)))
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LDP in the Gaussian case

Gaussian noise: 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

Cumulant generating function: ℋ︀(𝑥, 𝑣) = 𝜎2

2 ‖𝑣‖2

Lagrangian: ℒ︀(𝑥, 𝑣) = ‖𝑣+∇𝑓(𝑥)‖2

2𝜎2

Action functional:

𝒮︀𝑇 [𝛾] = 1
2𝜎2 ∫

𝑇

0
‖ ̇𝛾𝑡 + ∇𝑓(𝛾𝑡)‖

2𝑑𝑡
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LDP in the Gaussian case

Gaussian noise: 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

Cumulant generating function: ℋ︀(𝑥, 𝑣) = 𝜎2

2 ‖𝑣‖2

Lagrangian: ℒ︀(𝑥, 𝑣) = ‖𝑣+∇𝑓(𝑥)‖2

2𝜎2

Action functional:

𝒮︀𝑇 [𝛾] = 1
2𝜎2 ∫

𝑇

0
‖ ̇𝛾𝑡 + ∇𝑓(𝛾𝑡)‖

2𝑑𝑡

Key observations:

• 𝛾 is a trajectory of a gradient flow trajectory: ̇𝛾𝑡 = −∇𝑓(𝛾𝑡) iff 𝒮︀𝑇 [𝛾] = 0

• The farther 𝛾 is from being a gradient flow, the larger 𝒮︀𝑇 [𝛾]

• And, as a consequence, the smaller the probability of SGD following 𝛾:

ℙ(SGD on [0, 𝑇 /𝜂] ≈ 𝛾) ≈ exp(−𝒮︀𝑇 [𝛾]
𝜂

)
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Transition between critical points

Given 𝐾𝑖, 𝐾𝑗 critical points, what is ℙ(SGD transitions from 𝐾𝑖 to 𝐾𝑗)  ?
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Transition between critical points

Given 𝐾𝑖, 𝐾𝑗 critical points, what is ℙ(SGD transitions from 𝐾𝑖 to 𝐾𝑗)  ?
Involves the transition cost:

𝐵𝑖,𝑗 = inf{𝒮︀𝑇 [𝛾] | 𝛾(0) = 𝐾𝑖, 𝛾(𝑇 ) = 𝐾𝑗, 𝑇 > 0}

𝐾𝑗𝐾𝑖 𝛾(𝑡)

Key observations:
• If there is a trajectory of the gradient flow joining 𝐾𝑖 and 𝐾𝑗, then 𝐵𝑖,𝑗 = 0
• We can show:

𝐵𝑖,𝑗 ≥ 2(𝑓(𝐾𝑗)−𝑓(𝐾𝑖))
𝜎2
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Transition between critical points

Given 𝐾𝑖, 𝐾𝑗 critical points, what is ℙ(SGD transitions from 𝐾𝑖 to 𝐾𝑗)  ?
Involves the transition cost:

𝐵𝑖,𝑗 = inf{𝒮︀𝑇 [𝛾] | 𝛾(0) = 𝐾𝑖, 𝛾(𝑇 ) = 𝐾𝑗, 𝑇 > 0}

𝐾𝑗𝐾𝑖 𝛾(𝑡)

Key observations:
• If there is a trajectory of the gradient flow joining 𝐾𝑖 and 𝐾𝑗, then 𝐵𝑖,𝑗 = 0
• We can show:

𝐵𝑖,𝑗 ≥ 2(𝑓(𝐾𝑗)−𝑓(𝐾𝑖))
𝜎2

Proposition: Transition probability from 𝐾𝑖 to 𝐾𝑗: for 𝜂 > 0 small enough,

ℙ(SGD transitions from 𝐾𝑖 to 𝐾𝑗) ≈ exp(−
𝐵𝑖,𝑗

𝜂
)
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Restriction to critical components

Recall:
crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝} with 𝐾𝑖 connected components

𝐾1

𝐾2

𝐾3

Main idea of the proof: Restrict SGD to a chain visiting only critical components

→ studies a chain on {1, …, 𝑝}
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Transition graph

Study SGD as a Markov chain on {1, …, 𝑝} with transitions

ℙ(SGD transitions from 𝐾𝑖 to 𝐾𝑗) ≈ exp(−
𝐵𝑖,𝑗

𝜂
)

𝐵1,2

𝐵1,3

𝐵1,4

𝐵2,1

𝐵2,3

𝐵2,4
𝐵3,1

𝐵3,2

𝐵3,4

𝐵4,1

𝐵4,2

𝐵4,3

𝐾1

𝐾2

𝐾3

𝐾4

Transition graph: complete graph on {1, …, 𝑝} with weights 𝐵𝑖,𝑗 on 𝑖 → 𝑗

→ leverage exact formulas for finite-state space Markov chains
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Energy

Using exact formulas for finite-state space Markov chains:

Lemma (very informal): the invariant measure of SGD restricted to {𝐾1, …, 𝐾𝑝} is, for 𝜂 > 0 small enough,

𝜋(𝑖) ∝ exp(−𝐸𝑖
𝜂

)

Energy of 𝐾𝑖:

𝐸𝑖 = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 𝑖}

𝐵1,2

𝐵1,3

𝐵1,4

𝐵2,1

𝐵2,3

𝐵2,4
𝐵3,1

𝐵3,2

𝐵3,4

𝐵4,1

𝐵4,2

𝐵4,3

𝐾1

𝐾2

𝐾3

𝐾4
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Main results (more formal)

Recall:
crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝} with 𝐾𝑖 connected components

Theorem: Given : 𝜀 > 0, 𝒰︀𝑖 neighborhoods of 𝐾𝑖, and 𝜂 > 0 small enough,

1. Concentration on crit(𝑓): there is some 𝜆 > 0 s.t.
𝜇∞(⋃𝑝

𝑖=1 𝒰︀𝑖) ≥ 1 − 𝑒−𝜆
𝜂 , for some 𝜆 > 0

2. Boltzmann-Gibbs distribution: for all 𝑖,

𝜇∞(𝒰︀𝑖) ∝ exp(−𝐸𝑖+𝒪︀(𝜀)
𝜂 )

3. Avoidance of non-minimizers: if 𝐾𝑖 is not minimizing, there is 𝐾𝑗 minimizing with 𝐸𝑗 < 𝐸𝑖:

𝜇∞(𝒰︀𝑖)
𝜇∞(𝒰︀𝑗)

≤ 𝑒−
𝜆𝑖,𝑗

𝜂 for some 𝜆𝑖,𝑗 > 0

4. Concentration on ground states: given 𝒰︀0 neighborhood of the ground states 𝐾0 = argmin𝑖 𝐸𝑖

𝜇∞(𝒰︀0) ≥ 1 − 𝑒−𝜆0
𝜂 , for some 𝜆0 > 0
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Example: Gaussian noise

Assume 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

𝐵5,1 = 0; 𝐵1,5 = 2(𝑓(𝐾5) − 𝑓(𝐾1))
𝜎2
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Example: Gaussian noise

Assume 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

𝐸𝑖 = 2𝑓(𝐾𝑖)
𝜎2 and 𝜇∞(𝐾𝑖) ≈ exp(−2𝑓(𝐾𝑖)

𝜎2𝜂
)
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Example: Gaussian noise

If 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑), then 𝐸𝑖 = 2𝑓(𝐾𝑖)
𝜎2

Himmelblau function Simulation (solid blue) vs prediction (black wireframe) of the invariant 
measure
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Example: Gaussian noise

Evolution of the distribution of the iterates of SGD, initialized at random

26
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Gaussian noise: general case

• Assume 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

Boltzmann-Gibbs distribution: for all 𝑖,

𝐸𝑖 = 2𝑓(𝐾𝑖)
𝜎2 and 𝜇∞(𝐾𝑖) ≈ exp(−2𝑓(𝐾𝑖)

𝜎2𝜂
)
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Gaussian noise: general case

• Assume 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

Boltzmann-Gibbs distribution: for all 𝑖,

𝐸𝑖 = 2𝑓(𝐾𝑖)
𝜎2 and 𝜇∞(𝐾𝑖) ≈ exp(−2𝑓(𝐾𝑖)

𝜎2𝜂
)

• Assuming 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝑓(𝑥)𝐼𝑑)

→ Relevant for deep learning, eg (Mori et al., 2022)

Power-law Gibbs distribution: for all 𝑖,

𝐸𝑖 = 2 log 𝑓(𝐾𝑖)
𝜎2 and 𝜇∞(𝐾𝑖) ≈ 𝑓(𝐾𝑖)

− 2
𝜎2𝜂
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Minimizers of the energy = minimizers of the function?

𝑓(𝑥)

x2

𝑦

x1 𝜎2
2

𝜎2
1
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Minimizers of the energy = minimizers of the function?

𝑓(𝑥)

x2

𝑦

x1 𝜎2
2

𝜎2
1

𝐸1 = 𝑓(𝑦) − 𝑓(𝑥2)
𝜎2

2
and 𝐸2 = 𝑓(𝑦) − 𝑓(𝑥1)

𝜎2
1
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Minimizers of the energy = minimizers of the function?

𝑓(𝑥)

x2

𝑦

x1 𝜎2
2

𝜎2
1

𝐸1 = 𝑓(𝑦) − 𝑓(𝑥2)
𝜎2

2
and 𝐸2 = 𝑓(𝑦) − 𝑓(𝑥1)

𝜎2
1

If 𝜎1
1 small enough, 𝐸1 < 𝐸2 and so 𝜇∞(𝑥1) ≪ 𝜇∞(𝑥2) even if 𝑥1 is not a global minimizer!

→ Question of the concentration of SGD remains intricate
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Partial Conclusion (first part)

• We obtained a characterization of the invariant measure of SGD
• The relative weights of critical components depends on both the loss landscape and the noise structure
• Built on our large deviation framework to analyze the long-term behavior of SGD
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Recall: global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with some small margin 𝛿 > 0,
𝜏 = min{𝑡 ∈ ℕ | dist(𝑥𝑡, argmin 𝑓) ≤ 𝛿}
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Recall: global convergence time of SGD

Q2: How much time does SGD take to reach the global minima?

Hitting time: with some small margin 𝛿 > 0,
𝜏 = min{𝑡 ∈ ℕ | dist(𝑥𝑡, argmin 𝑓) ≤ 𝛿}

Global convergence time of SGD: starting at 𝑥, the time 𝜏  to reach argmin 𝑓  satisfies

exp(𝐽(𝑥) − 𝜀
𝜂

) ≤ 𝔼𝑥[𝜏 ] ≤ exp(𝐽(𝑥) + 𝜀
𝜂

)

where 𝐽(𝑥) “energy” of SGD starting at 𝑥, for any 𝜀 > 0 and 𝜂, 𝛿 > 0 small enough
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Definition of 𝐽(𝑥)

Transition graph: complete graph on {0, …, 𝑁 − 1} with weights 𝐵𝑖,𝑗 on 𝑖 → 𝑗

Energy of 𝐾0 = argmin 𝑓 :

𝐸0 = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 0}

𝐵0,1

𝐵0,2

𝐵0,3

𝐵1,0

𝐵1,2

𝐵1,3
𝐵2,0

𝐵2,1

𝐵2,3

𝐵3,0

𝐵3,1

𝐵3,2

𝐾0

𝐾1

𝐾2

𝐾3

Energy of pruning 𝐾𝑖:

𝐽(𝑖 ↛ 0) = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 0 with an edge from 𝑖 to 0 removed}

Energy of 𝐾0 relative to 𝐾𝑖:
𝐽(𝑖) = 𝐸0 − 𝐽(𝑖 ↛ 0)  

Energy of 𝐾0 relative to 𝑥:
𝐽(𝑥) = max

𝑖=1,…,𝑁−1
[𝐽(𝑖) − 𝐵(𝑥, 𝑖)]+

where 𝐵(𝑥, 𝑖) cost of the transition from 𝑥 to 𝐾𝑖
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𝐽(𝑥): measure of the hardness of the problem

𝔼𝑥[𝜏 ] ≈ exp(𝐽(𝑥)
𝜂

)

General fact: 𝐽(𝑥) = 0 for all 𝑥 ⟺ all local minima of 𝑓 are global

𝐽(𝑥) > 0
𝑓(𝑥)

x0

x1

x2

x3

x4
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𝜂

)

General fact: 𝐽(𝑥) = 0 for all 𝑥 ⟺ all local minima of 𝑓 are global

𝐽(𝑥) = 0 𝑓(𝑥)

x0

x1

x2

x3

x4
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𝐽(𝑥): measure of the hardness of the problem

𝔼𝑥[𝜏 ] ≈ exp(𝐽(𝑥)
𝜂

)

General fact: 𝐽(𝑥) = 0 for all 𝑥 ⟺ all local minima of 𝑓 are global

→ neural networks when width ≥ # data points + 1 (e.g. Nguyen et al., 2018; Nguyen et al., 2019)

𝐽(𝑥) = 0 𝑓(𝑥)

x0

x1

x2

x3

x4
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Gaussian bounds

For Gaussian noise 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑),

Gaussian bound:

𝐽(𝑥) ≤ 2 × ♯{bad local minima} × {max. saddle - min. bad local min.}
𝜎2

𝐽(𝑥) ≤ 2 × 2 × (𝑓(𝑥1) − 𝑓(𝑥4))
𝜎2

𝑓(𝑥)

x0

x1

x2

x3

x4
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Gaussian bounds

For Gaussian noise 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑),

Gaussian bound:

𝐽(𝑥) ≤ 2 × ♯{bad local minima} × {max. saddle - min. bad local min.}
𝜎2

→ can be bounded as a function of width / depth of neural networks (e.g. Nguyen et al., 2021)

𝐽(𝑥) ≤ 2 × 2 × (𝑓(𝑥1) − 𝑓(𝑥4))
𝜎2

𝑓(𝑥)

x0

x1

x2

x3

x4
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Example: Three Humps

𝑓(𝑥)

x0

x1

x2

x3

x4

𝑓(𝑥) = 2𝑥6
1

13
+ 𝑥5

1
8

− 91𝑥4
1

64
− 24𝑥3

1
48

+ 42𝑥2
1

16
+ 5𝑥2

2
4

+ 𝑥1𝑥2
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Three Humps: Simulation

For 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑),

we predict

𝐽(𝑥) = 2(𝑓(𝑥1) − 𝑓(𝑥4))
𝜎2

log 𝜏 ≈ 2(𝑓(𝑥1) − 𝑓(𝑥4))
𝜎2 × 1

𝜂
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Partial Conclusion (second part)

• We presented a characterization of the global convergence time of SGD
• The key quantity 𝐽(𝑥) captures the interplay between the loss landscape and the noise structure
• Built on our large deviation framework to analyze the long-term behavior of SGD
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Conclusions and perspectives

• Provided answers to two fundamental questions about SGD in nonconvex problems,
• Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.
• Answered these questions by developing a novel large deviation framework to analyze the long-term 

behavior of SGD.

Slides and references: wazizian.fr
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Conclusions and perspectives

• Provided answers to two fundamental questions about SGD in nonconvex problems,
• Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.
• Answered these questions by developing a novel large deviation framework to analyze the long-term 

behavior of SGD.

• Coming next:
• Analysis and design of adaptive methods
• Understanding the implicit bias of SGD

Slides and references: wazizian.fr
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Power-law Gaussian bounds

For Gaussian noise 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝑓(𝑥)𝐼𝑑)

Power-law Gaussian bound:

𝐽(𝑥) ≤ 2 × ♯{bad local minima} × {log max. saddle - log min. bad local min.}
𝜎2

𝐽(𝑥) ≤ 2 × 2(log 𝑓(𝑥1) − log 𝑓(𝑥4))
𝜎2

𝑓(𝑥)

x0

x1

x2

x3

x4
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Three Humps: Simulation

For 𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝑓(𝑥)𝐼𝑑),

we predict

𝐽(𝑥) = 2(log 𝑓(𝑥1) − log 𝑓(𝑥4))
𝜎2

log 𝜏 ≈ 2(log 𝑓(𝑥1) − log 𝑓(𝑥4))
𝜎2 × 1

𝜂
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Generic bounds for energy

If 𝐾𝑖∗ = argmin 𝑓 ,

sup
𝑗≠𝑖∗

{𝐸𝑖∗ − 𝐸𝑗} ≤ 2 × ♯{bad local minima} × {max. saddle - min. bad local min.}
𝜎2

others

−2{depth of global min.}
𝜎2

𝑖∗

where 𝜎2
𝑖∗  “upper bound” on the noise at 𝐾𝑖∗  and 𝜎2

others “lower bound” on the noise at other components

𝑓(𝑥)

x0

x1

x2

x3

x4
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Quasi-potential

Following Kifer (1988), for any 𝑥, 𝑥′

𝐵(𝑥, 𝑥′) = inf{𝒮︀𝑇 [𝛾] | 𝛾(0) = 𝑥, 𝛾(𝑇 ) = 𝑥′, 𝑇 ∈ ℕ}

“𝐵(𝑥, 𝑥′) quantifies how probable a transition from 𝑥 to 𝑥′ is”

𝛾(𝑡)

𝑥

𝑥′

Key observations:
• If there is a trajectory of the gradient flow joining 𝑥 and 𝑥′, then 𝐵(𝑥, 𝑥′) = 0
• We can show:

𝐵(𝑥, 𝑥′) ≥ 2(𝑓(𝑥′) − 𝑓(𝑥))
𝜎2
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Induced chain
Recall:

crit(𝑓) ≔ {𝑥 : ∇𝑓(𝑥) = 0} = {𝐾1, 𝐾2, …, 𝐾𝑝} with 𝐾𝑖 connected components

(Conceptual) induced chain:

𝑧𝑛 = 𝑖 if the 𝑛-th visited component is 𝐾𝑖 (up to a small neighborhood)

Goal: show that 𝑧𝑛 captures the long-run behavior of SGD

Two key ingredients:

Ingredient 1 The behavior of SGD started at 𝑥0 ∈ 𝐾𝑖 depends only on 𝑖.

Ingredient 2 SGD spends most of its time it near crit(𝑓).
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Ingredient 1

Equivalence relation:
for 𝑥, 𝑥′ ∈ crit(𝑓), 𝑥 ∼ 𝑥′ ⇔ 𝐵(𝑥, 𝑥′) = 𝐵(𝑥′, 𝑥) = 0

Proposition:
if the 𝐾𝑖 are connected by smooth arcs, the equivalence classes of ∼ are exactly 𝐾1, …, 𝐾𝑝

𝑥 𝑥′
𝛾(𝑡)

𝐾𝑖

“Behaviour of SGD started at 𝑥 ≈ Behaviour of SGD started at 𝑥′”
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Ingredient 2

Proposition: given crit(𝑓) ⊂ 𝒰︀ ⊂ 𝒞︀ with 𝒰︀ open, 𝒞︀ compact, for 𝜂 > 0 small enough,

∀𝑥 ∈ 𝒞︀, ℙ(SGD started at 𝑥 reaches 𝒰︀ in ≥ 𝑛 steps) ≤ 𝑒−Ω(𝑛
𝜂 )

𝐾1

𝐾2

𝐾3

𝒰︀

𝒞︀
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Induced chain

(Conceptual) induced chain:
𝑧𝑛 = 𝑖 if the 𝑛-th visited component is 𝐾𝑖 (up to a small neighborhood)

𝐾1

𝐾2

𝐾3

𝒰︀

Ingredients 1 + 2 imply

The induced chain 𝑧𝑛 captures the long-run behavior of SGD
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Example: Back to Himmelblau

Divergence between iterates and Gibbs
𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝐼𝑑)

Divergence between iterates and Power-law
𝑍(𝑥; 𝜔) ∼ 𝒩︀(0, 𝜎2𝑓(𝑥)𝐼𝑑)
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No spurious local minima: Simulation

Consider a non-convex function (with maxima and saddles) but no spurious local minima:

We predict 𝐸 = 0 and thus

log 𝜏 = cst
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Attempt with SDE

1. Approximate SGD by an SDE:

𝑑𝑋𝑡 = −∇𝑓(𝑋𝑡)𝑑𝑡 + √𝜂Σ(𝑋𝑡)𝑑𝑊𝑡

2. Combine with the exponential convergence of the SDE to its invariant measure
𝑋𝑡 →

𝑡→∞
𝜇∞

But: convergence speed of the SDE is not fast enough to compensate for the approximation error!
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