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TLDR: We describe the asymptotic distribution of SGD in nonconvex problems
through a large deviation approach

Problem of interest

minimize
nimize f(z)

Stochastic Gradient Descent (SGD):
L1 = Ly — 1] Vf(xt) T Z(%? Wt)

step-size Zero-mean noise

Basic assumptions:
e fisB-smooth: |Vf(x)—Vf(a')| <pB|e—2a"| forall z,z’
* fis coercive: limy, ., f(x) = 400

Critical points
— {s e R | Vf(x) = 0}

SGD spends most of its time on average near critical points crit(f)

Q: Which critical points are more likely to be visited by SGD and by how much?

Regularity assumption:

crit(f) = U K,, where K, (smoothly) connected components

Invariant measure
Invariant measure: probability measure u_, on R? such that
Ty ~ Hoo = Tir1 ™~ Koo

— weak-x limit points of the mean occupation measures of the iterates of SGD:

] & '
by = B |~ Zl 1{z, € B}
. t: -

Q: Where do invariant measures of SGD concentrate?

Noise assumptions:
e E|Z(z;w)] =0, cov(Z(z;w)) = 0, Z(x;w)
e Z(x;w) IS o sub-Gaussian:

= O(||z||) almost surely

]OgE[e<v,Z(x;w)>] < %2”1,”2
« SNR high enough:

2
lim inf) ;o V)] larger than some constant

o)

Example (Finite-sum):

f(x) = %Z?:l fi(x) + %||x||2 with f, Lipschitz and smooth; Z(z;w) =V f, (z) — V f(x)

~ What is the Long-Run Distribution of SGD?

A Large Deviation Analysis

W. Azizian, F. lutzeler, ). Malick, P. Mertikopoulos
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Noise statistics:

Cumulant generating function of Z(z;w): H(z,v) = logE[el»Z @]
Lagrangian: ,C(CU,’U) — }[*(33, —U— Vf(il?)))

Lemma (Large deviations for SGD)

SGD admits a large deviation principle as n — 0 with action functional
T
Srlvl = /ﬁ(fyt,f'yt)dt for any v : [0,T] — R% abs. continuous on [0, T
0

This means: for n > 0 small enough, for any trajectory ~ : [0,T] — R¢,

Srly] + (9(5))
7

P(SGD on [0, T /n] ~ v) = eXp(

Main results:

1. Concentration near critical points: The iterates of SGD are exponentially con-
centrated near the critical points of f

2. Saddle-point avoidance: Non-minimizing critical points are exponentially less
likely to be observed than local minimizers

3. Boltzmann-Gibbs distribution: The probability of observing a critical point is
exponentially proportional to its energy (not its value)

4. Ground state concentration: The iterates of SGD are exponentially more likely
to be observed near its ground state (set of minimum energy)

Challenges and techniques:

 No known approach to analyze the asymptotic distribution of SGD in non-convex problems
e.g. SDE approximations only valid on finite time horizons

« We leverage large deviation theory and the theory of random dynamical systems,
— Estimate the probability of rare events, such as SGD escaping a local minima

« We adapt the theory of Freidlin & Wentzell (1998); Kifer (1988) to SGD with two main challenges:

a) Lack of compactness
b) Realistic noise models (finite sum)
— Remedy these issues by refining the analysis
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”v” and £(z,v) = |v+V ()]
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Example (Gaussian noise): Z(z;w) ~ N(0,0%1;), H(x,v) =

1

Stlv] = 952

T
/H%+VNMFﬁ
0

é )

Proposition (Transition probability)

Transition probability from K, to K ;.

» B, ; + O(e)
P(SGD transitions from K; to K;) = exp ’

N

where B, ; transition cost

B, ; = inf{S7["] | 7(0) € K;,7(T) € K;, T € N}

\. J

Technical assumption: B; ; < +oo for all 4, j

Transition graph: complete graph on {1, ...,p} with weights B; ; on i — j

Energy of K.

E, = min{ Y B, | T spanning tree pointing to z}

J—keT

( )

Theorem (Invariant measure of SGD)

Given :e > 0, U, neighborhoods of K,, and n > 0 small enough,

1. Concentration on crit(f): there is some ¢ > 0 s.t.

,uoo( i Z[)>1—e ",

- forsomec >0

2. Boltzmann-Gibbs distribution: for all

Poo (U;) X eXp( Eﬁf(s))

3. Avoidance of non-minimizers: If K; Is not minimizing, then there is K; minimizing with E; < E;:

G e for some ¢, ; > 0
Hoo (Z[]) "

4. Concentration on ground states: given U, neighborhood of the ground states K, = argmin,; F,,

C

o (Upy) >1—€ 7, for some cy, > 0

Example (Gaussian noise): E, = J;(:;)
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