

# What is the Long-Run Behaviour of SGD?

*Argo Seminar*

*December 18, 2025*

**W. Azizian**, F. Iutzeler, J. Malick, P. Mertikopoulos

# Training in machine learning = stochastic gradient methods

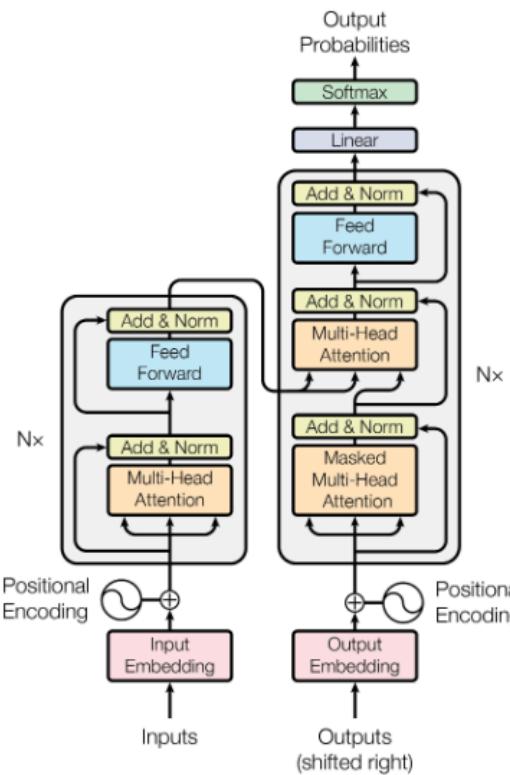
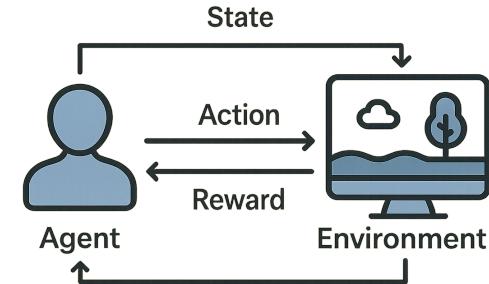
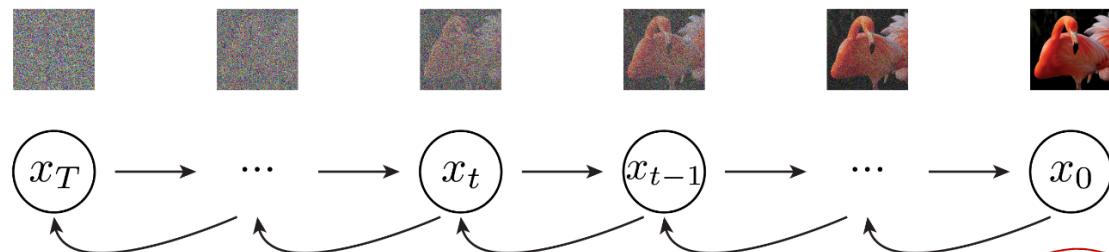


Image credit: Vaswani et al., 2017



Image credit: Meta AI



Different domains, same training method = stochastic gradient methods

# Nonconvex loss!



Image credit: [losslandscape.com](http://losslandscape.com)

Training of deep neural networks = stochastic gradient methods on a nonconvex loss function

## Core focus: SGD

For  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  loss of model with parameters  $x$ ,

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) \quad \text{where} \quad f(x) = \mathbb{E}_\omega[f(x; \omega)]$$

**Stochastic Gradient Descent (SGD):** with *constant* step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \begin{bmatrix} \nabla f(x_t) + Z(x_t; \omega_t) \\ \text{step-size} \qquad \qquad \qquad \text{zero-mean noise} \end{bmatrix}$$

## Core focus: SGD

For  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  loss of model with parameters  $x$ ,

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \ f(x) \quad \text{where} \quad f(x) = \mathbb{E}_\omega[f(x; \omega)]$$

**Stochastic Gradient Descent (SGD):** with constant step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \left[ \nabla f(x_t) + Z(x_t; \omega_t) \right]$$

## Finite-sum problems / Empirical risk minimization:

For  $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$ , at each iteration, sample  $i_t$ ,

$$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$

$$= x_t - \eta \left[ \nabla f(x_t) + \nabla f_{i_t}(x_t) - \nabla f(x_t) \right]$$

zero-mean noise

## Core focus: SGD

For  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  loss of model with parameters  $x$ ,

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) \quad \text{where} \quad f(x) = \mathbb{E}_\omega[f(x; \omega)]$$

**Stochastic Gradient Descent (SGD):** with *constant* step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \begin{bmatrix} \nabla f(x_t) + Z(x_t; \omega_t) \\ \text{step-size} \qquad \qquad \text{zero-mean noise} \end{bmatrix}$$

**Q:** What is the asymptotic behavior of SGD?

## Core focus: SGD

For  $f : \mathbb{R}^d \rightarrow \mathbb{R}$  loss of model with parameters  $x$ ,

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \quad f(x) \quad \text{where} \quad f(x) = \mathbb{E}_\omega[f(x; \omega)]$$

**Stochastic Gradient Descent (SGD):** with *constant* step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \begin{bmatrix} \nabla f(x_t) + Z(x_t; \omega_t) \\ \text{step-size} \qquad \qquad \qquad \text{zero-mean noise} \end{bmatrix}$$

**Q:** What is the asymptotic behavior of SGD?

→ **Q1:** Where are the iterates most likely to go?

→ **Q2:** How much time to get there?

# What is known?

**Stochastic Gradient Descent (SGD):** with constant step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta [\nabla f(x_t) + Z(x_t; \omega_t)]$$

**What we are not doing:**

- Stochastic Approximation:

$$x_{t+1} = x_t - \eta_t [\nabla f(x_t) + Z(x_t; \omega_t)] \text{ with } \eta_t \propto \frac{1}{t^{0.5+\varepsilon}}$$

Convergence to local minima (Bertsekas & Tsitsiklis, 2000) but can't get no information about which one.

- Sampling (MCMC, Langevin): to sample from  $e^{-f}$

$$x_{t+1} = x_t - \eta \nabla f(x_t) + \sqrt{2\eta} \mathcal{N}(0, \sigma^2)$$

Convergence of the distribution of the iterates to  $e^{-f}$  (Raginsky et al., 2017) but scaling of the noise differs from SGD  
⇒ analysis does not carry over

- Continuous-time limit (Gradient flow, SDE):

$$dX_t = -\nabla f(X_t)dt + \sqrt{\eta \text{cov}(Z(X_t; \cdot))}dW_t$$

Provable approximation of SGD (Li et al., 2017) but only on finite time horizons

# What is known?

**Stochastic Gradient Descent (SGD):** with constant step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \left[ \nabla f(x_t) + Z(x_t; \omega_t) \right]$$

## SGD with constant step-size:

- $f$  strongly convex: SGD converges near the minimizer (Polyak, 1987)
- $f$  convex: average of SGD iterates (almost) optimal (Polyak & Juditsky, 1992)
- $f$  nonconvex:
  - In average, close to criticality (Lan, 2012)

$$\mathbb{E} \left[ \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|^2 \right] = \mathcal{O} \left( \frac{1}{\sqrt{T}} \right)$$

- With probability 1, SGD is not stuck in (strict) saddle points (Brandière & Duflo, 1996; Mertikopoulos et al., 2020)

→ **Q1:** Which critical points (and which local minima) are visited most often in the long run?

→ **Q2:** How much time to get to the global minimum?

# New approach: large deviations

**TLDR:** we describe the asymptotic behavior of SGD in nonconvex problems through a large deviation approach

## Outline:

1. Introduction
2. Asymptotic distribution of SGD
3. Global convergence time of SGD

Based on our papers:

- *What is the long-run behavior of SGD? A large deviation analysis.* ICML 2024
- *The global convergence time of SGD in non-convex landscapes.* ICML 2025

# On the objective function $f$

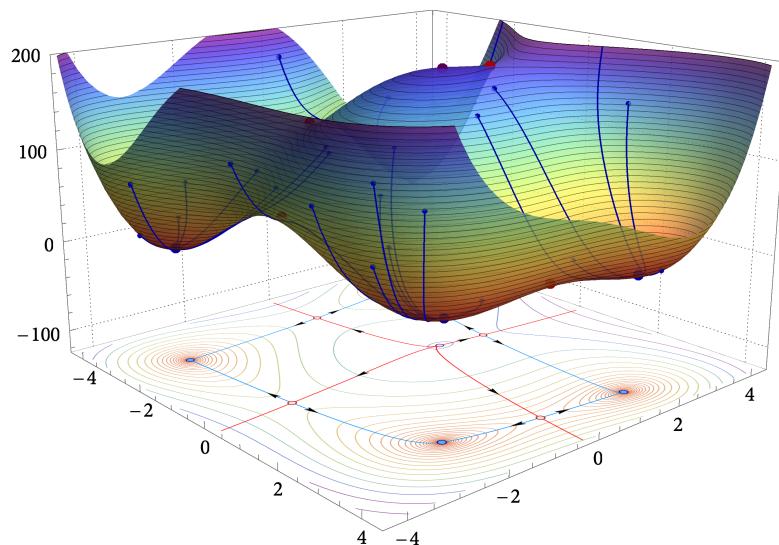
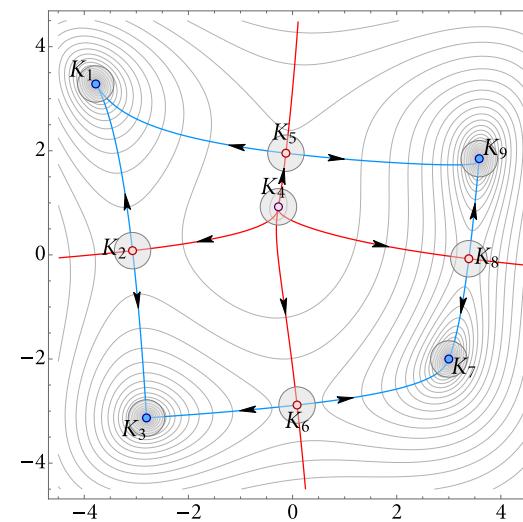
Regularity assumption:

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\}$$

where  $K_i$  connected components (compact)

→ Avoids pathological cases, realistic in practice

Himmelblau function



## Asymptotic distribution of SGD

Stochastic Gradient Descent (SGD): with *constant* step-size  $\eta > 0$

$$x_{t+1} = x_t - \eta \left[ \nabla f(x_t) + Z(x_t; \omega_t) \right]$$

Invariant measures are limit points of the mean occupation measures of the iterates of SGD:  
for any set  $\mathcal{B}$  of interest, as  $n \rightarrow \infty$ ,

$$\mathbb{E} \left[ \frac{1}{n} \sum_{t=1}^n \mathbf{1}\{x_t \in \mathcal{B}\} \right] \approx \mu_\infty(\mathcal{B})$$

Invariant measure: probability measure  $\mu_\infty$  such that

$$x_t \sim \mu_\infty \quad \Rightarrow \quad x_{t+1} \sim \mu_\infty$$

**Q1:** Where do invariant measures of SGD concentrate?

# Main results (informal)

Recall:

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\} \text{ with } K_i \text{ connected components}$$

## 1. Concentration near critical points:

$$\mu_\infty(\text{crit}(f)) \rightarrow 1 \quad \text{as } \eta \rightarrow 0$$

## 2. Saddle-point avoidance:

$$\mu_\infty(\text{saddle point}) \ll \mu_\infty(\text{local minima})$$

## 3. Boltzmann-Gibbs distribution: for some energy levels $E_i$ ,

$$\mu_\infty(K_i) \propto \exp\left(-\frac{E_i}{\eta}\right)$$

## 4. Ground state concentration: there is $K_{i_0}$ that minimizes $E_i$ such that,

$$\mu_\infty(K_{i_0}) \rightarrow 1 \quad \text{as } \eta \rightarrow 0$$

## Global convergence time of SGD

**Q2:** How much time does SGD take to reach the global minima?

**Hitting time:** with small margin  $\delta > 0$ ,

$$\tau = \min\{t \in \mathbb{N} \mid \text{dist}(x_t, \text{argmin } f) \leq \delta\}$$

**Q2:** What is  $\mathbb{E}_x[\tau]$  for SGD started at  $x$ ?

## Main result (informal)

**Global convergence time of SGD:** starting at  $x$ , the time  $\tau$  to reach  $\operatorname{argmin} f$  satisfies

$$\mathbb{E}_x[\tau] \approx \exp\left(\frac{J(x)}{\eta}\right)$$

where  $J(x)$  energy of SGD starting at  $x$ , for  $\eta, \delta$  small enough

**Key quantity  $J(x)$ :** geometric measure of problem's hardness, it captures

- The difficulty of the loss landscape
- The statistics of the noise

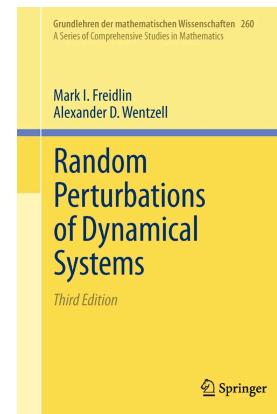
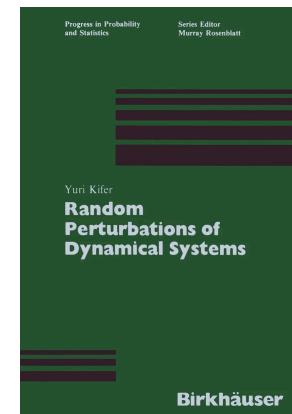
# Challenges and techniques

- No known approach to analyze the asymptotic distribution of SGD on non-convex problems
- We leverage large deviation theory and the theory of random perturbations of dynamical systems,  
→ Estimate the probability of rare events, such as SGD escaping a local minima
- We adapt the theory of random perturbations of dynamical systems with three main challenges:
  - a) Lack of compactness
  - b) Realistic noise models (finite sum)
  - c) Discrete-time dynamics  
→ Remedy these issues by refining the analysis

## References

Freidlin, M. I., & Wentzell, A. D., 2012. *Random perturbations of dynamical systems*. Springer

Kifer, Y., 1988. *Random perturbations of dynamical systems*. Birkhäuser



# Objective and noise assumptions

Recall: we assume

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\}$$

where  $K_i$  connected components (compact)

## Objective assumptions:

- $\nabla f$  is Lipschitz-continuous
- $f$  is coercive:  $\lim_{\|x\| \rightarrow \infty} f(x) = \lim_{\|x\| \rightarrow \infty} \|\nabla f(x)\| = +\infty$

## Noise assumptions:

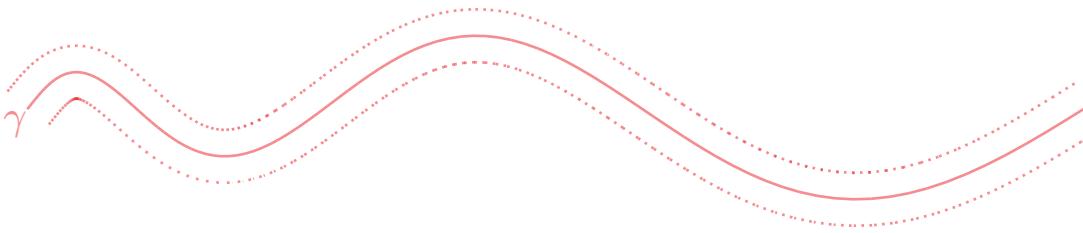
- $\mathbb{E}[Z(x; \omega)] = 0$ ,  $\text{cov}(Z(x; \omega)) \succ 0$ ,  $Z(x; \omega) = O(\|x\|)$  almost surely
- $Z(x; \omega)$  is  $\sigma$  sub-Gaussian:

$$\log \mathbb{E}[e^{\langle v, Z(x; \omega) \rangle}] \leq \frac{\sigma^2}{2} \|v\|^2$$

→ Realistic in the context of deep learning (normalization layers, weight decay, GeLU/Swish activations, etc.)

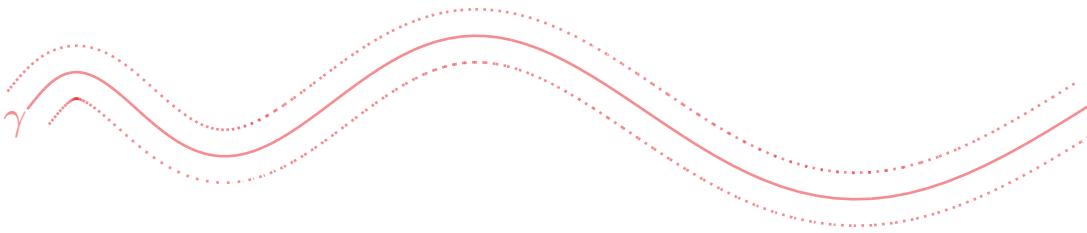
## Large deviations for discrete-time SGD

Consider  $\gamma : [0, T] \rightarrow \mathbb{R}^d$  continuous path in parameter space,  $\mathbb{P}(\text{SGD} \approx \gamma) = ?$



# Large deviations for discrete-time SGD

Consider  $\gamma : [0, T] \rightarrow \mathbb{R}^d$  continuous path in parameter space,  $\mathbb{P}(\text{SGD} \approx \gamma) = ?$



**Proposition:** SGD admits a large deviation principle as  $\eta \rightarrow 0$ : for any path  $\gamma : [0, T] \rightarrow \mathbb{R}^d$ ,

$$\mathbb{P}(\text{SGD on } [0, T/\eta] \approx \gamma) \approx \exp\left(-\frac{\mathcal{S}_T[\gamma]}{\eta}\right) \quad \text{where } \mathcal{S}_T[\gamma] = \int_0^T \mathcal{L}(\gamma_t, \dot{\gamma}_t) dt$$

Using tools from (Freidlin & Wentzell, 2012; Dupuis, 1988)

Cumulant generating function of  $Z(x; \omega)$ :  $\mathcal{H}(x, v) = \log \mathbb{E}[e^{\langle v, Z(x; \omega) \rangle}]$

Lagrangian:  $\mathcal{L}(x, v) = \mathcal{H}^*(x, -v - \nabla f(x))$

## LDP in the Gaussian case

Gaussian noise:

$$Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$$

Cumulant generating function:

$$\mathcal{H}(x, v) = \frac{\sigma^2}{2} \|v\|^2$$

Lagrangian:

$$\mathcal{L}(x, v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

## LDP in the Gaussian case

Gaussian noise:

$$Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$$

Cumulant generating function:

$$\mathcal{H}(x, v) = \frac{\sigma^2}{2} \|v\|^2$$

Lagrangian:

$$\mathcal{L}(x, v) = \frac{\|v + \nabla f(x)\|^2}{2\sigma^2}$$

Action functional:

$$\mathcal{S}_T[\gamma] = \frac{1}{2\sigma^2} \int_0^T \|\dot{\gamma}_t + \nabla f(\gamma_t)\|^2 dt$$

### Key observations:

- $\gamma$  is a trajectory of a gradient flow trajectory:  $\dot{\gamma}_t = -\nabla f(\gamma_t)$  iff  $\mathcal{S}_T[\gamma] = 0$
- The farther  $\gamma$  is from being a gradient flow, the larger  $\mathcal{S}_T[\gamma]$
- And, as a consequence, the smaller the probability of SGD following  $\gamma$ :

$$\mathbb{P}(\text{SGD on } [0, T/\eta] \approx \gamma) \approx \exp\left(-\frac{\mathcal{S}_T[\gamma]}{\eta}\right)$$

## Transition between critical points

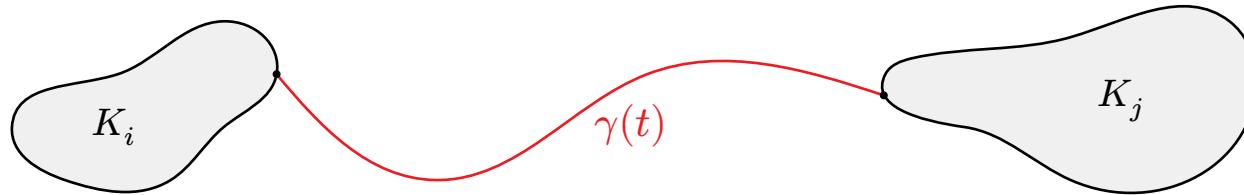
Given  $K_i, K_j$  critical points, what is  $\mathbb{P}(\text{SGD transitions from } K_i \text{ to } K_j)$  ?

## Transition between critical points

Given  $K_i, K_j$  critical points, what is  $\mathbb{P}(\text{SGD transitions from } K_i \text{ to } K_j)$  ?

Involves the transition cost:

$$B_{i,j} = \inf\{\mathcal{S}_T[\gamma] \mid \gamma(0) = K_i, \gamma(T) = K_j, T > 0\}$$



### Key observations:

- If there is a trajectory of the gradient flow joining  $K_i$  and  $K_j$ , then  $B_{i,j} = 0$
- We can show:

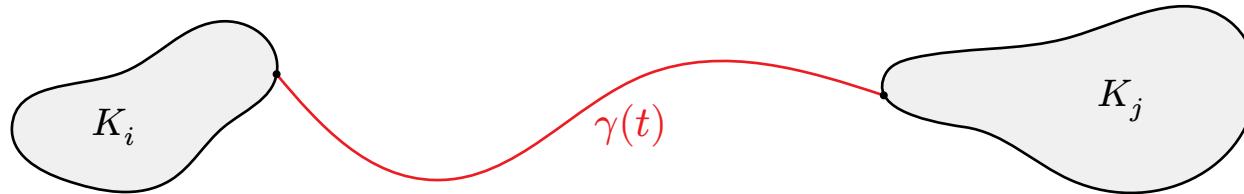
$$B_{i,j} \geq \frac{2(f(K_j) - f(K_i))}{\sigma^2}$$

## Transition between critical points

Given  $K_i, K_j$  critical points, what is  $\mathbb{P}(\text{SGD transitions from } K_i \text{ to } K_j)$  ?

Involves the transition cost:

$$B_{i,j} = \inf\{\mathcal{S}_T[\gamma] \mid \gamma(0) = K_i, \gamma(T) = K_j, T > 0\}$$



### Key observations:

- If there is a trajectory of the gradient flow joining  $K_i$  and  $K_j$ , then  $B_{i,j} = 0$
- We can show:

$$B_{i,j} \geq \frac{2(f(K_j) - f(K_i))}{\sigma^2}$$

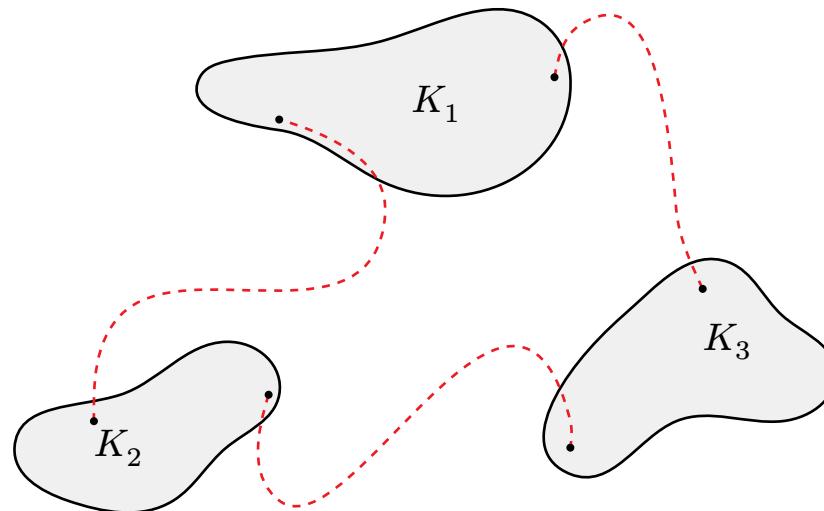
**Proposition:** Transition probability from  $K_i$  to  $K_j$ : for  $\eta > 0$  small enough,

$$\mathbb{P}(\text{SGD transitions from } K_i \text{ to } K_j) \approx \exp\left(-\frac{B_{i,j}}{\eta}\right)$$

## Restriction to critical components

Recall:

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\} \text{ with } K_i \text{ connected components}$$



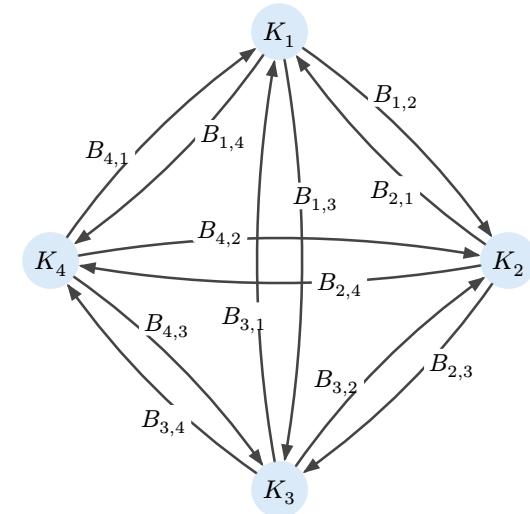
*Main idea of the proof:* Restrict SGD to a chain visiting only critical components

→ studies a chain on  $\{1, \dots, p\}$

# Transition graph

Study SGD as a Markov chain on  $\{1, \dots, p\}$  with transitions

$$\mathbb{P}(\text{SGD transitions from } K_i \text{ to } K_j) \approx \exp\left(-\frac{B_{i,j}}{\eta}\right)$$



**Transition graph:** complete graph on  $\{1, \dots, p\}$  with weights  $B_{i,j}$  on  $i \rightarrow j$

→ leverage exact formulas for finite-state space Markov chains

## Energy

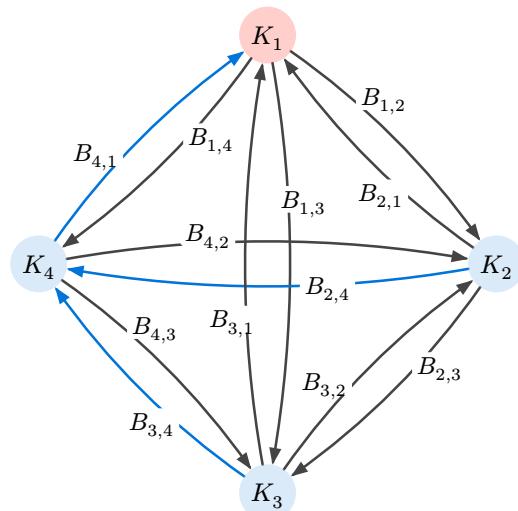
Using exact formulas for finite-state space Markov chains:

**Lemma** (very informal): the invariant measure of SGD restricted to  $\{K_1, \dots, K_p\}$  is, for  $\eta > 0$  small enough,

$$\pi(i) \propto \exp\left(-\frac{E_i}{\eta}\right)$$

Energy of  $K_i$ :

$$E_i = \min \left\{ \sum_{j \rightarrow k \in T} B_{j,k} \mid T \text{ spanning tree pointing to } i \right\}$$



## Main results (more formal)

Recall:

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\} \text{ with } K_i \text{ connected components}$$

**Theorem:** Given  $\varepsilon > 0$ ,  $\mathcal{U}_i$  neighborhoods of  $K_i$ , and  $\eta > 0$  small enough,

1. **Concentration on**  $\text{crit}(f)$ : there is some  $\lambda > 0$  s.t.

$$\mu_\infty \left( \bigcup_{i=1}^p \mathcal{U}_i \right) \geq 1 - e^{-\frac{\lambda}{\eta}}, \quad \text{for some } \lambda > 0$$

2. **Boltzmann-Gibbs distribution:** for all  $i$ ,

$$\mu_\infty(\mathcal{U}_i) \propto \exp\left(-\frac{E_i + \mathcal{O}(\varepsilon)}{\eta}\right)$$

3. **Avoidance of non-minimizers:** if  $K_i$  is not minimizing, there is  $K_j$  minimizing with  $E_j < E_i$ :

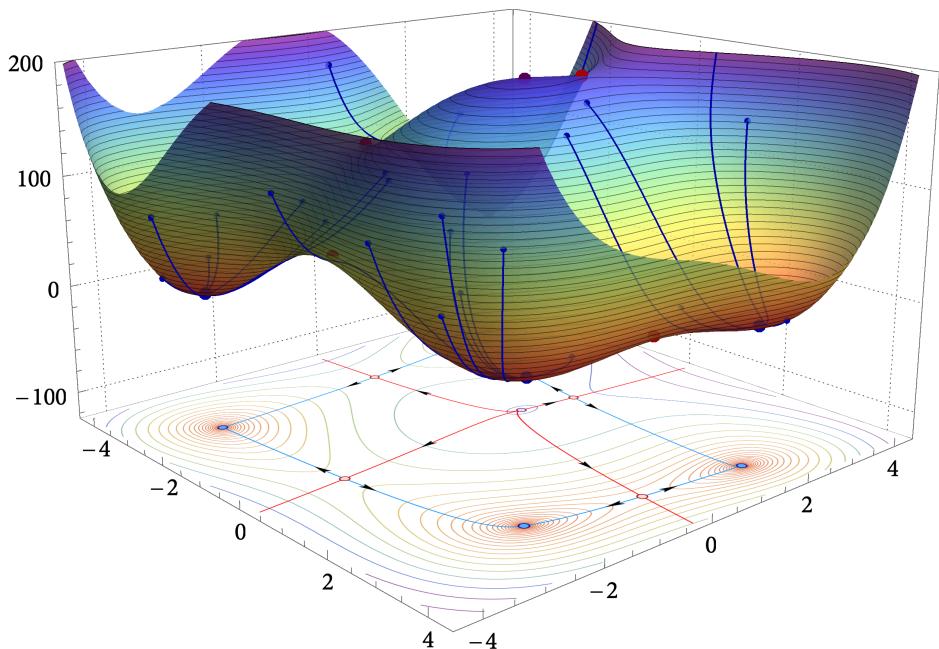
$$\frac{\mu_\infty(\mathcal{U}_i)}{\mu_\infty(\mathcal{U}_j)} \leq e^{-\frac{\lambda_{i,j}}{\eta}} \quad \text{for some } \lambda_{i,j} > 0$$

4. **Concentration on ground states:** given  $\mathcal{U}_0$  neighborhood of the ground states  $K_0 = \operatorname{argmin}_i E_i$

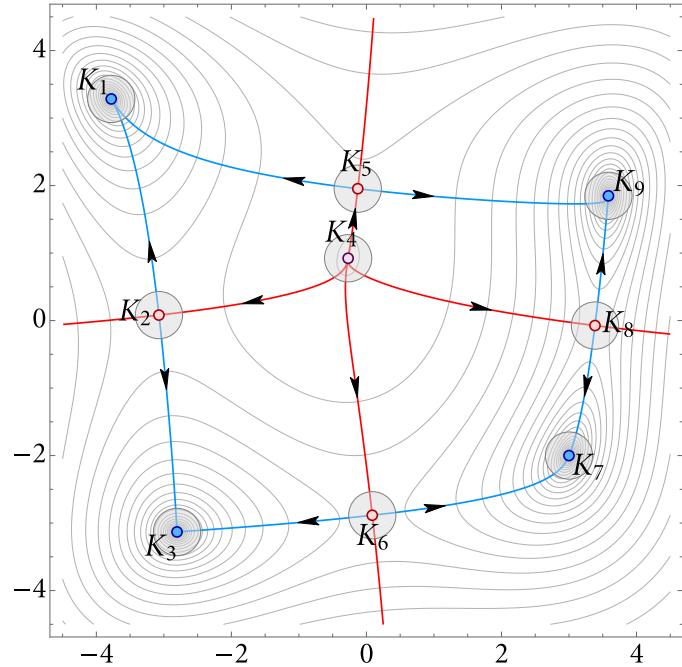
$$\mu_\infty(\mathcal{U}_0) \geq 1 - e^{-\frac{\lambda_0}{\eta}}, \quad \text{for some } \lambda_0 > 0$$

## Example: Gaussian noise

Assume  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$

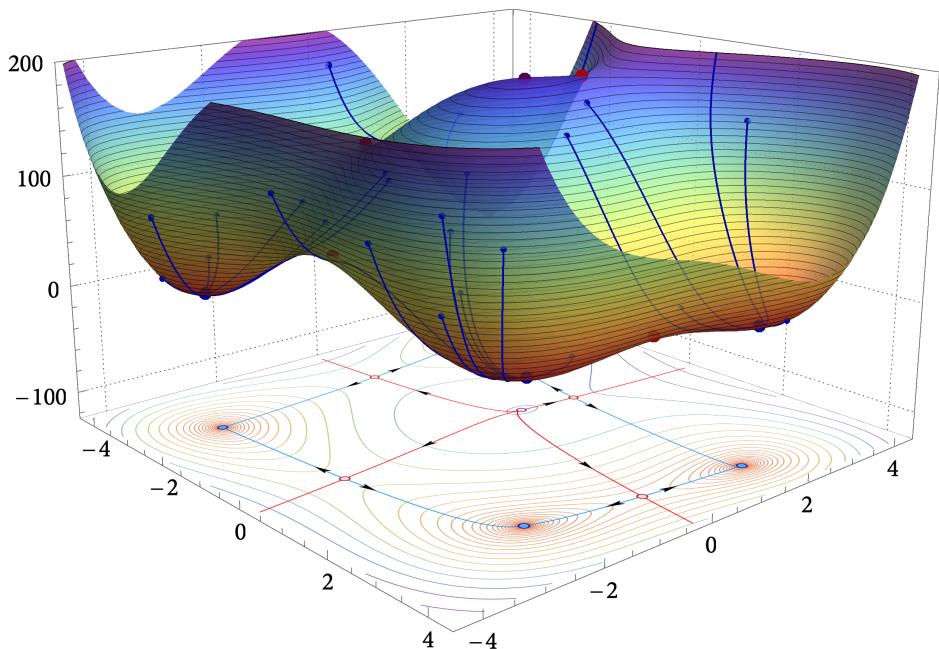
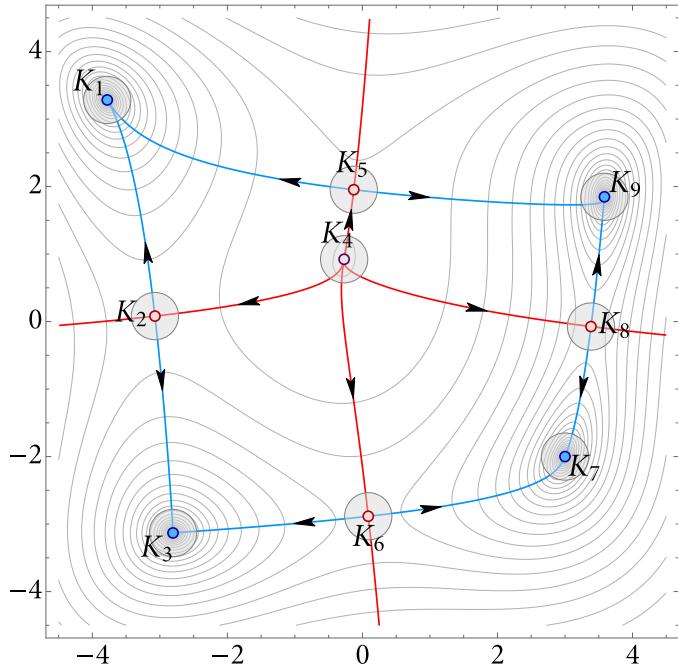


$$B_{5,1} = 0; \quad B_{1,5} = \frac{2(f(K_5) - f(K_1))}{\sigma^2}$$



## Example: Gaussian noise

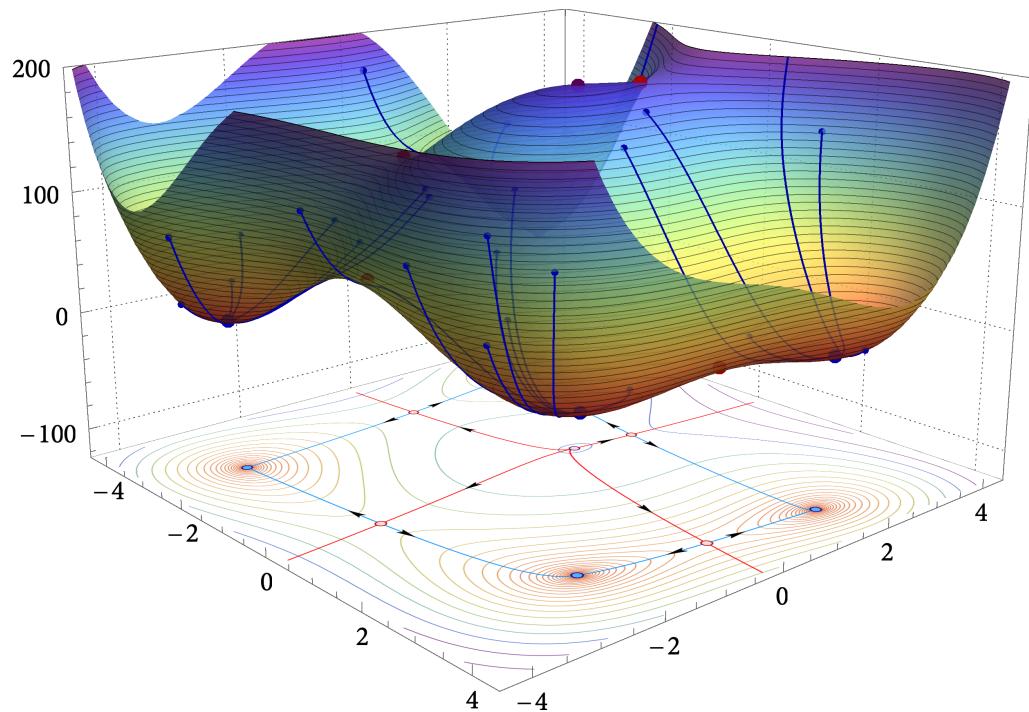
Assume  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$



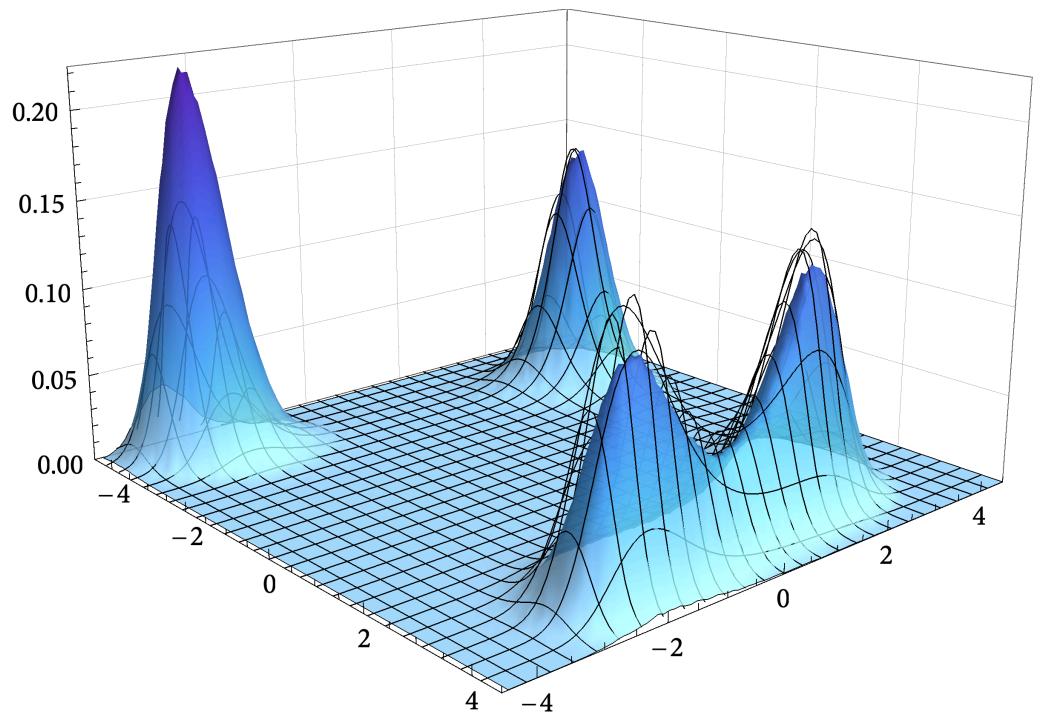
$$E_i = \frac{2f(K_i)}{\sigma^2} \quad \text{and} \quad \mu_\infty(K_i) \approx \exp\left(-\frac{2f(K_i)}{\sigma^2 \eta}\right)$$

## Example: Gaussian noise

If  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$ , then  $E_i = \frac{2f(K_i)}{\sigma^2}$

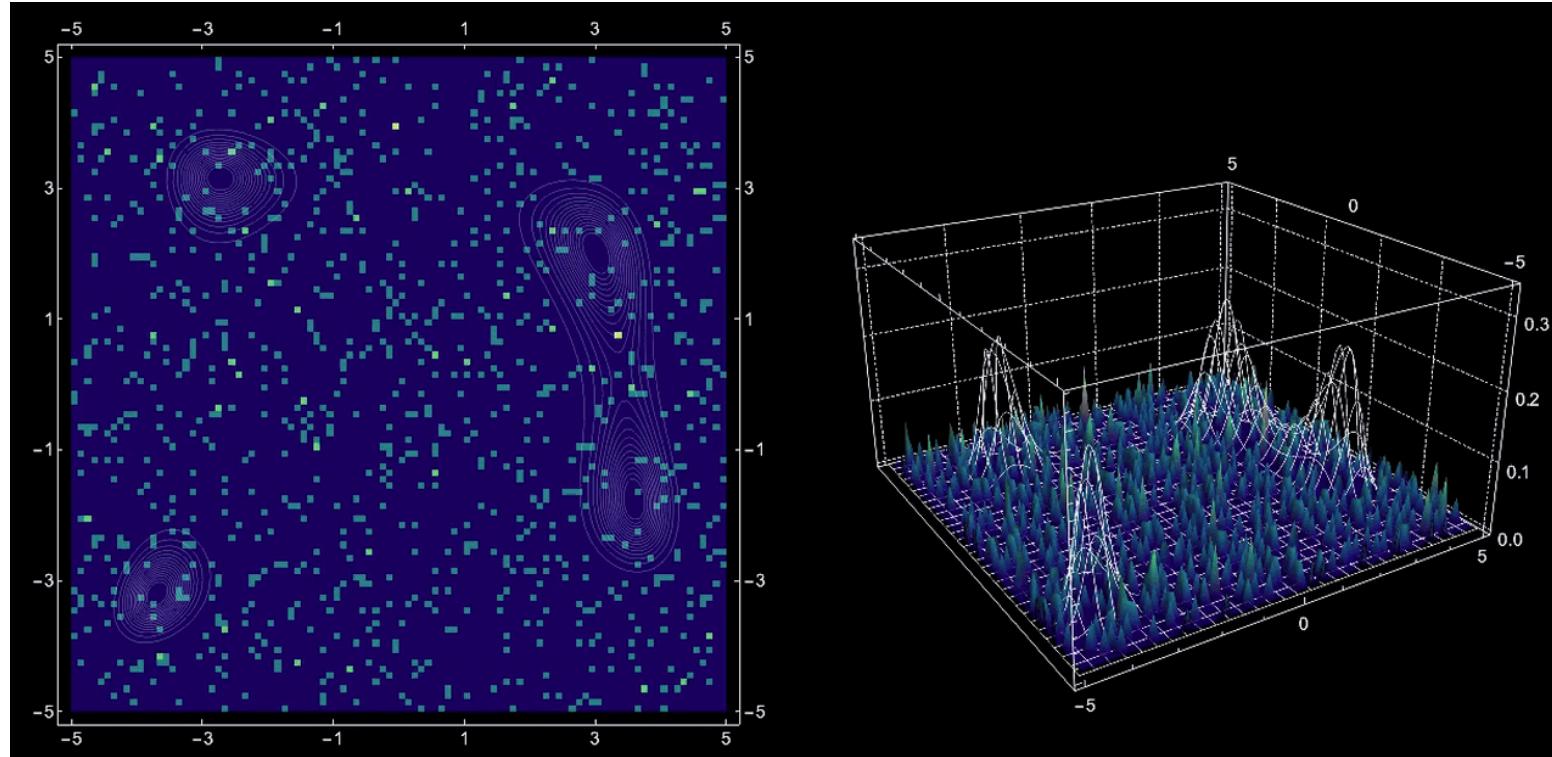


Himmelblau function



Simulation (solid blue) vs prediction (black wireframe) of the invariant measure

## Example: Gaussian noise



Evolution of the distribution of the iterates of SGD, initialized at random

## Gaussian noise: general case

- Assume  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$

**Boltzmann-Gibbs distribution:** for all  $i$ ,

$$E_i = \frac{2f(K_i)}{\sigma^2} \quad \text{and} \quad \mu_\infty(K_i) \approx \exp\left(-\frac{2f(K_i)}{\sigma^2 \eta}\right)$$

## Gaussian noise: general case

- Assume  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$

**Boltzmann-Gibbs distribution:** for all  $i$ ,

$$E_i = \frac{2f(K_i)}{\sigma^2} \quad \text{and} \quad \mu_\infty(K_i) \approx \exp\left(-\frac{2f(K_i)}{\sigma^2 \eta}\right)$$

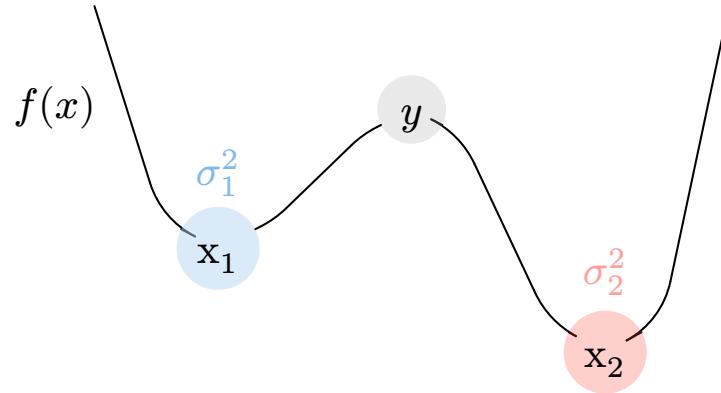
- Assuming  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 f(x) I_d)$

→ Relevant for deep learning, eg (Mori et al., 2022)

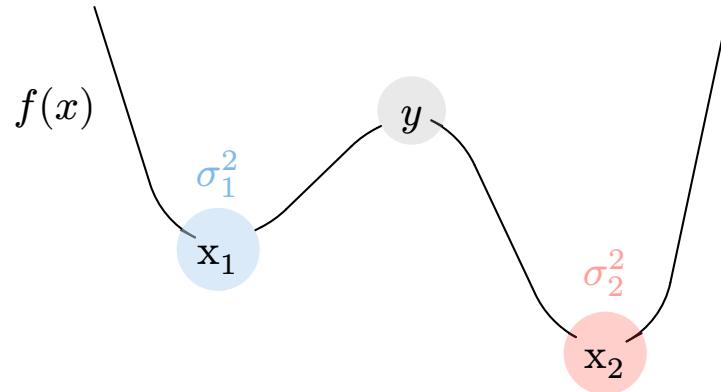
**Power-law Gibbs distribution:** for all  $i$ ,

$$E_i = \frac{2 \log f(K_i)}{\sigma^2} \quad \text{and} \quad \mu_\infty(K_i) \approx f(K_i)^{-\frac{2}{\sigma^2 \eta}}$$

## Minimizers of the energy = minimizers of the function?

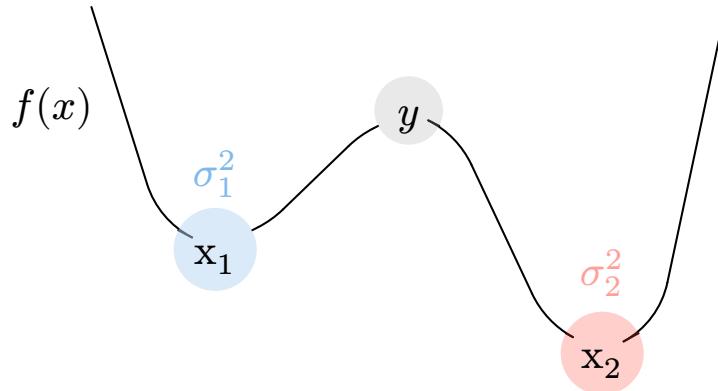


## Minimizers of the energy = minimizers of the function?



$$E_1 = \frac{f(y) - f(x_2)}{\sigma_2^2} \quad \text{and} \quad E_2 = \frac{f(y) - f(x_1)}{\sigma_1^2}$$

## Minimizers of the energy = minimizers of the function?



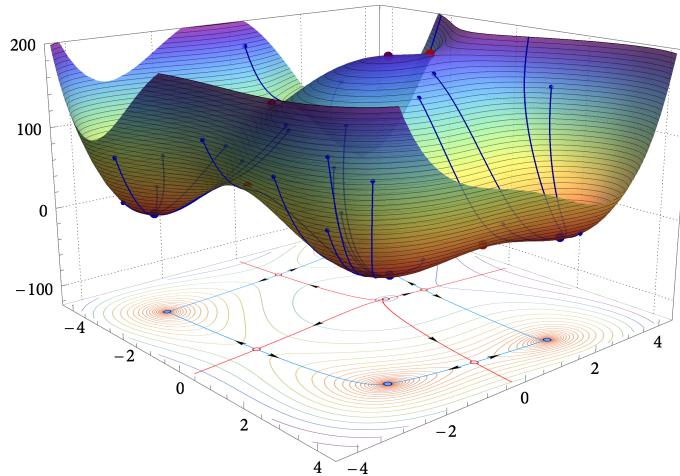
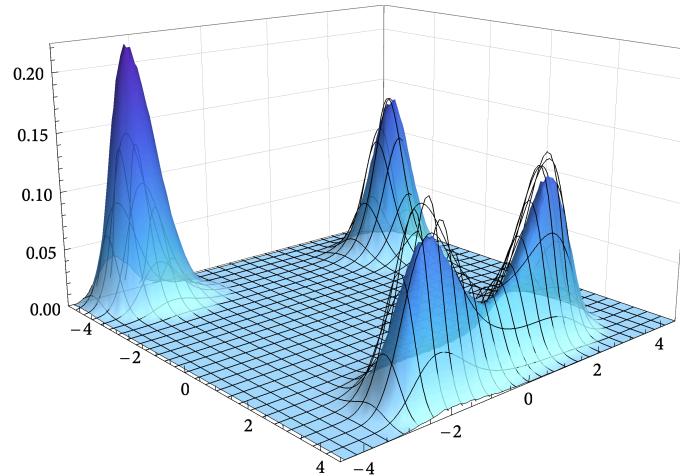
$$E_1 = \frac{f(y) - f(x_2)}{\sigma_2^2} \quad \text{and} \quad E_2 = \frac{f(y) - f(x_1)}{\sigma_1^2}$$

If  $\sigma_1^2$  small enough,  $E_1 < E_2$  and so  $\mu_\infty(x_1) \ll \mu_\infty(x_2)$  even if  $x_1$  is not a global minimizer!

→ Question of the concentration of SGD remains intricate

## Partial Conclusion (first part)

- We obtained a characterization of the invariant measure of SGD
- The relative weights of critical components depends on both the loss landscape and the noise structure
- Built on our large deviation framework to analyze the long-term behavior of SGD



## Recall: global convergence time of SGD

**Q2:** How much time does SGD take to reach the global minima?

**Hitting time:** with some small margin  $\delta > 0$ ,

$$\tau = \min\{t \in \mathbb{N} \mid \text{dist}(x_t, \text{argmin } f) \leq \delta\}$$

## Recall: global convergence time of SGD

**Q2:** How much time does SGD take to reach the global minima?

**Hitting time:** with some small margin  $\delta > 0$ ,

$$\tau = \min\{t \in \mathbb{N} \mid \text{dist}(x_t, \text{argmin } f) \leq \delta\}$$

**Global convergence time of SGD:** starting at  $x$ , the time  $\tau$  to reach  $\text{argmin } f$  satisfies

$$\exp\left(\frac{J(x) - \varepsilon}{\eta}\right) \leq \mathbb{E}_x[\tau] \leq \exp\left(\frac{J(x) + \varepsilon}{\eta}\right)$$

where  $J(x)$  “energy” of SGD starting at  $x$ , for any  $\varepsilon > 0$  and  $\eta, \delta > 0$  small enough

## Definition of $J(x)$

**Transition graph:** complete graph on  $\{0, \dots, N-1\}$  with weights  $B_{i,j}$  on  $i \rightarrow j$

Energy of  $K_0 = \text{argmin } f$ :

$$E_0 = \min \left\{ \sum_{j \rightarrow k \in T} B_{j,k} \mid T \text{ spanning tree pointing to } 0 \right\}$$

Energy of pruning  $K_i$ :

$$J(i \not\rightarrow 0) = \min \left\{ \sum_{j \rightarrow k \in T} B_{j,k} \mid T \text{ spanning tree pointing to } 0 \text{ with an edge from } i \text{ to } 0 \text{ removed} \right\}$$

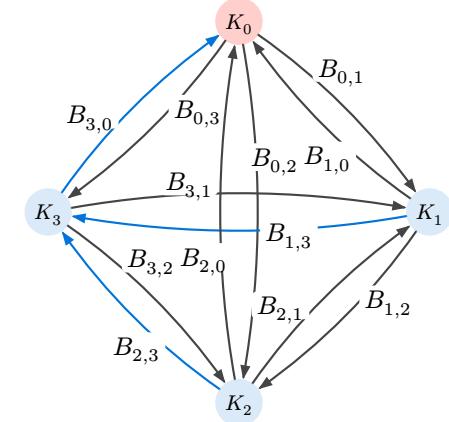
Energy of  $K_0$  relative to  $K_i$ :

$$J(i) = E_0 - J(i \not\rightarrow 0)$$

Energy of  $K_0$  relative to  $x$ :

$$J(x) = \max_{i=1, \dots, N-1} [J(i) - B(x, i)]_+$$

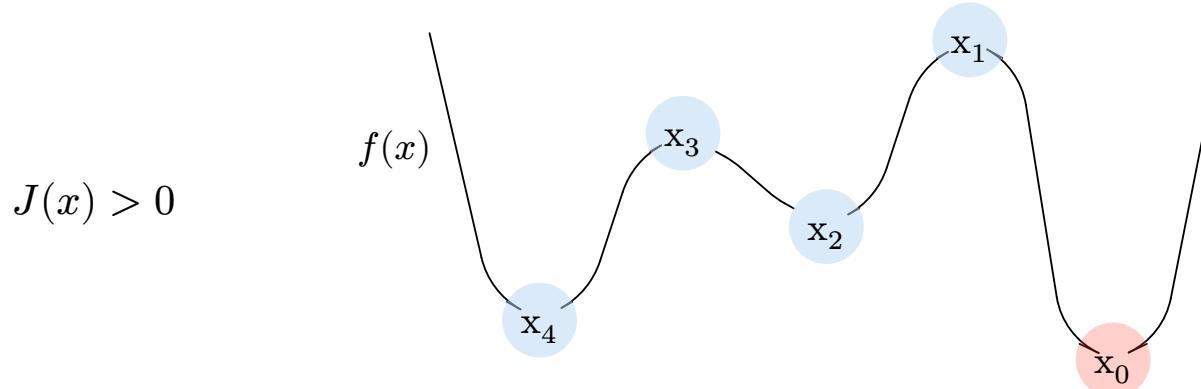
where  $B(x, i)$  cost of the transition from  $x$  to  $K_i$



## $J(x)$ : measure of the hardness of the problem

$$\mathbb{E}_x[\tau] \approx \exp\left(\frac{J(x)}{\eta}\right)$$

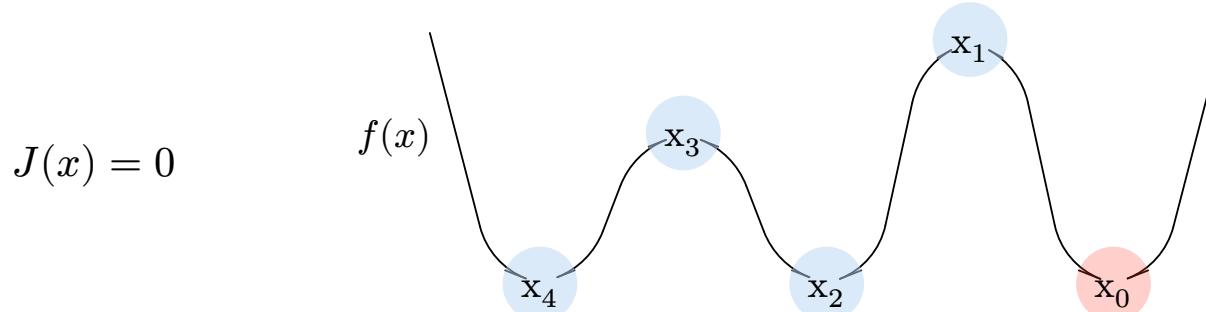
**General fact:**  $J(x) = 0$  for all  $x \iff$  all local minima of  $f$  are global



## $J(x)$ : measure of the hardness of the problem

$$\mathbb{E}_x[\tau] \approx \exp\left(\frac{J(x)}{\eta}\right)$$

**General fact:**  $J(x) = 0$  for all  $x \iff$  all local minima of  $f$  are global



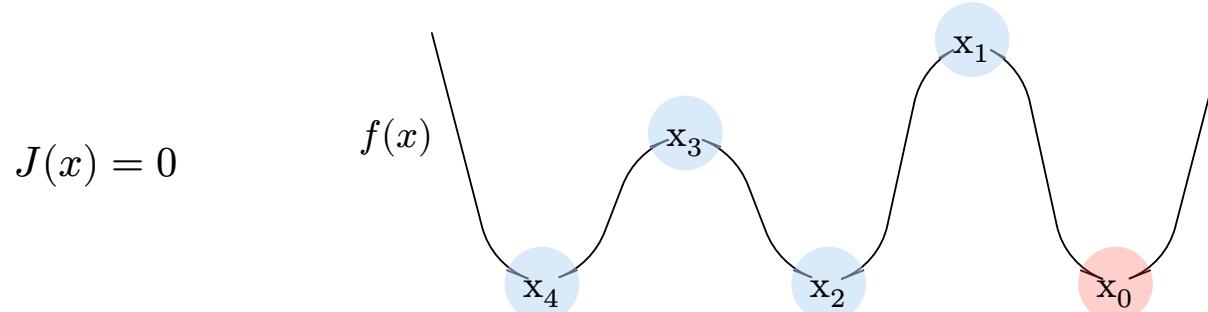
$$J(x) = 0$$

## $J(x)$ : measure of the hardness of the problem

$$\mathbb{E}_x[\tau] \approx \exp\left(\frac{J(x)}{\eta}\right)$$

**General fact:**  $J(x) = 0$  for all  $x \iff$  all local minima of  $f$  are global

→ neural networks when width  $\geq$  # data points + 1 (e.g. Nguyen et al., 2018; Nguyen et al., 2019)



$$J(x) = 0$$

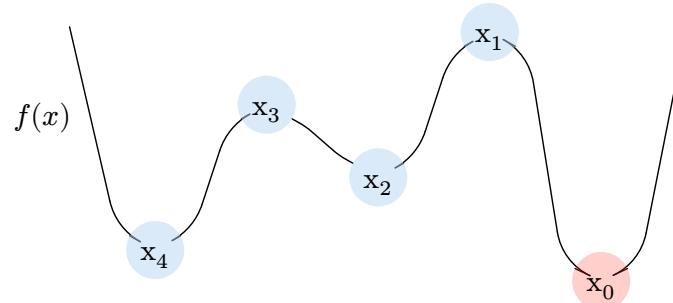
# Gaussian bounds

For Gaussian noise  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$ ,

**Gaussian bound:**

$$J(x) \leq \frac{2 \times \#\{\text{bad local minima}\} \times \{\text{max. saddle} - \text{min. bad local min.}\}}{\sigma^2}$$

$$J(x) \leq \frac{2 \times 2 \times (f(x_1) - f(x_4))}{\sigma^2}$$



## Gaussian bounds

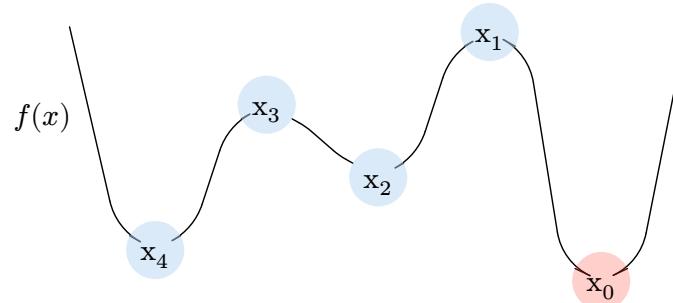
For Gaussian noise  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$ ,

**Gaussian bound:**

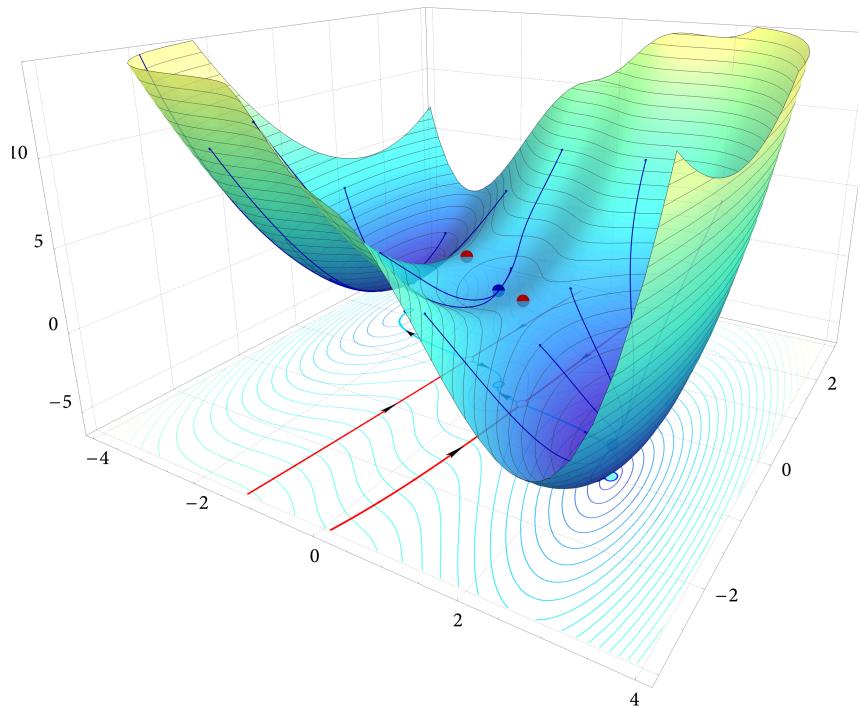
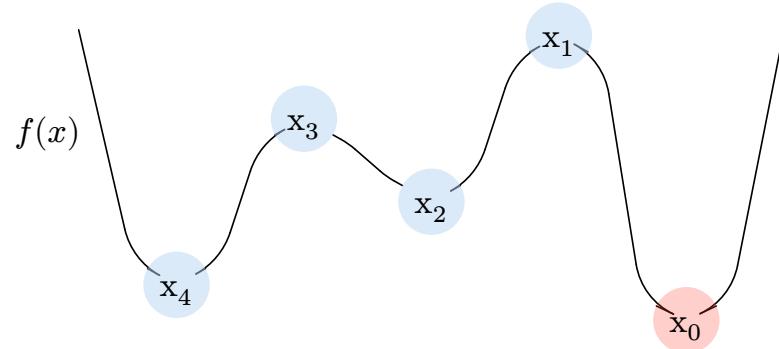
$$J(x) \leq \frac{2 \times \#\{\text{bad local minima}\} \times \{\text{max. saddle} - \text{min. bad local min.}\}}{\sigma^2}$$

→ can be bounded as a function of width / depth of neural networks (e.g. Nguyen et al., 2021)

$$J(x) \leq \frac{2 \times 2 \times (f(x_1) - f(x_4))}{\sigma^2}$$



## Example: Three Humps



$$f(x) = 2\frac{x_1^6}{13} + \frac{x_1^5}{8} - 91\frac{x_1^4}{64} - 24\frac{x_1^3}{48} + 42\frac{x_1^2}{16} + 5\frac{x_2^2}{4} + x_1 x_2$$

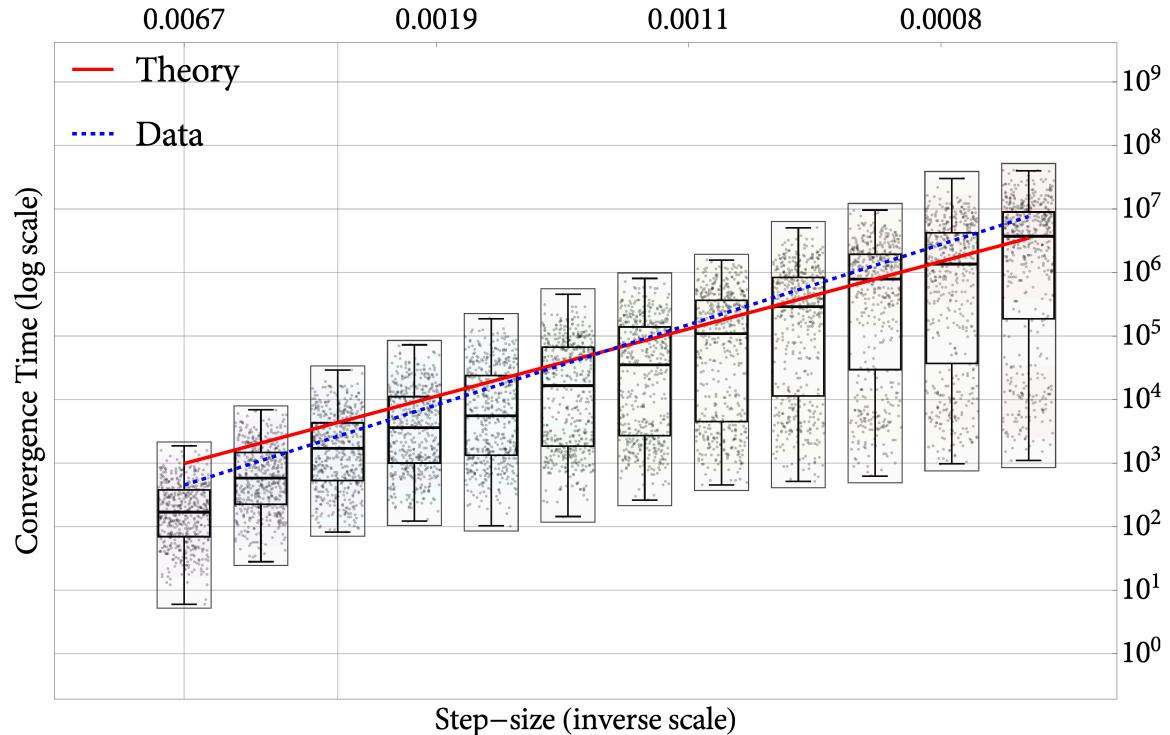
# Three Humps: Simulation

For  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$ ,

we predict

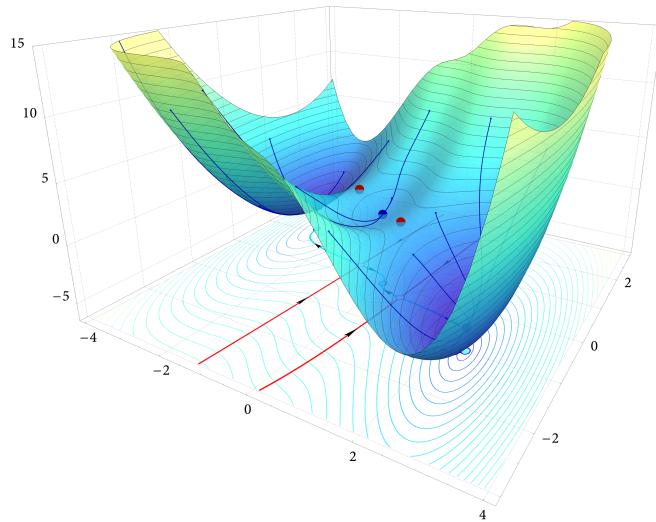
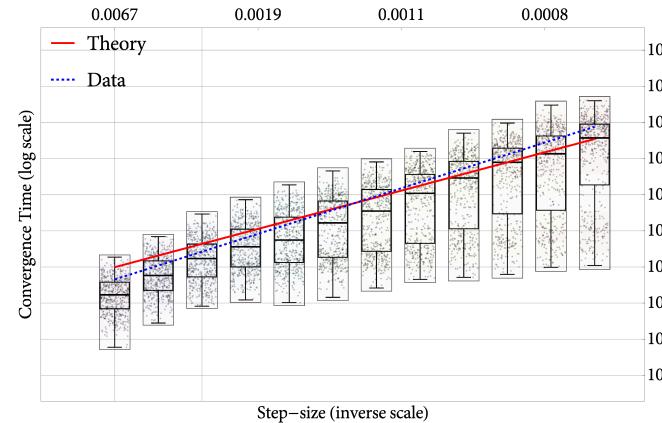
$$J(x) = \frac{2(f(x_1) - f(x_4))}{\sigma^2}$$

$$\log \tau \approx \frac{2(f(x_1) - f(x_4))}{\sigma^2} \times \frac{1}{\eta}$$



## Partial Conclusion (second part)

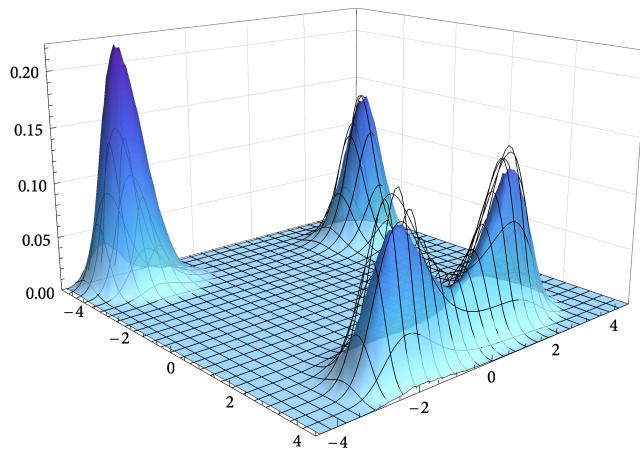
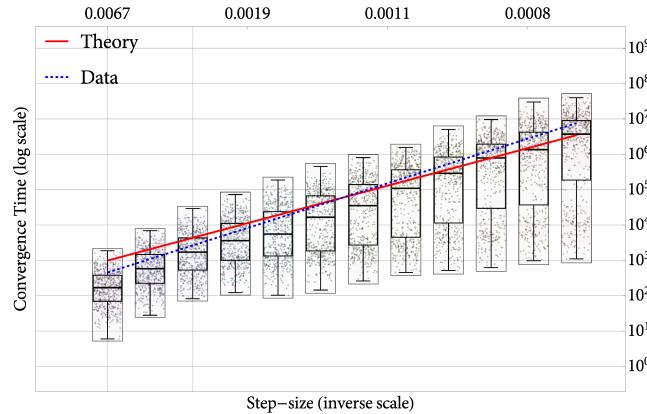
- We presented a characterization of the global convergence time of SGD
- The key quantity  $J(x)$  captures the interplay between the loss landscape and the noise structure
- Built on our large deviation framework to analyze the long-term behavior of SGD



# Conclusions and perspectives

- Provided answers to two fundamental questions about SGD in nonconvex problems,
- Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.
- Answered these questions by developing a novel large deviation framework to analyze the long-term behavior of SGD.

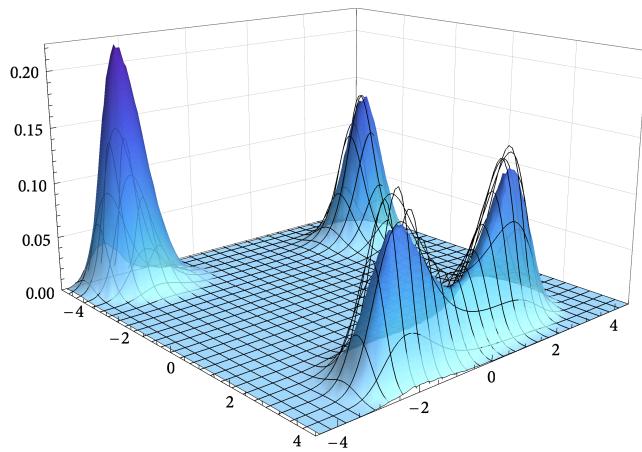
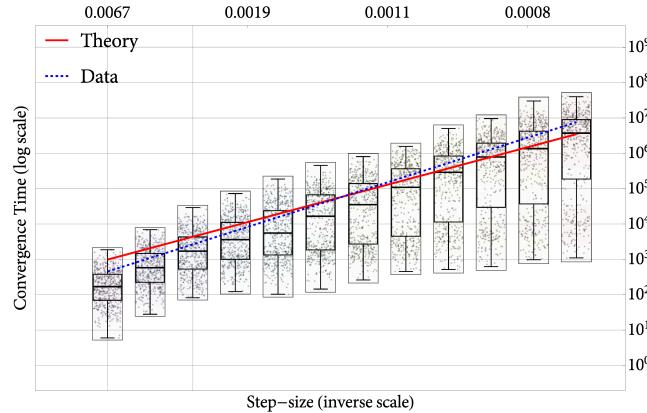
Slides and references: [wazizian.fr](http://wazizian.fr)



# Conclusions and perspectives

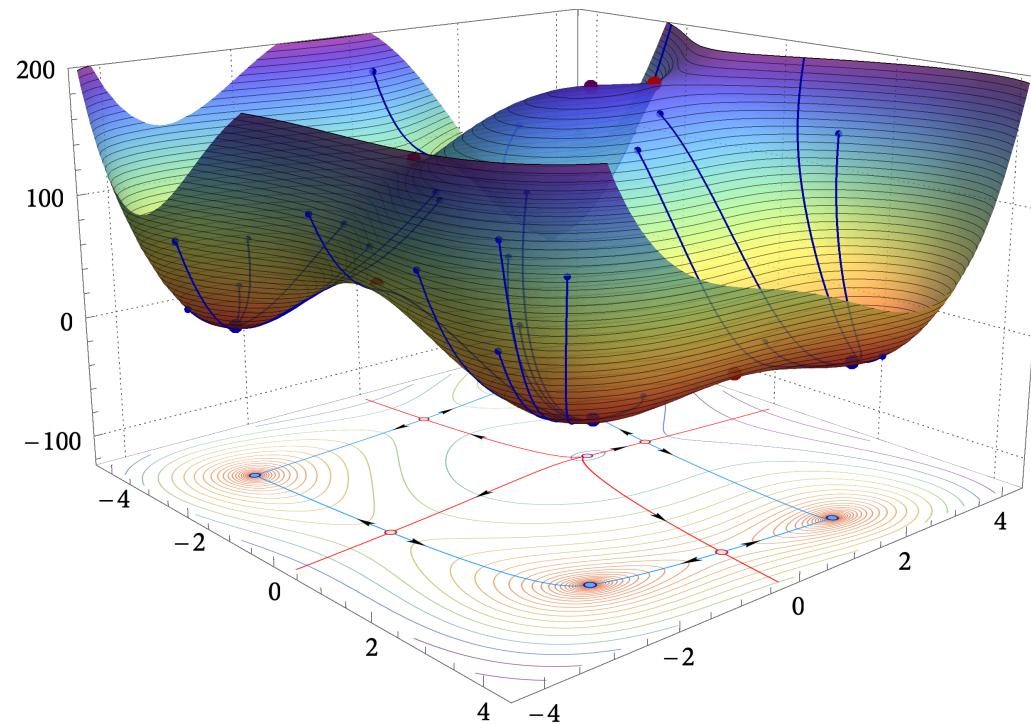
- Provided answers to two fundamental questions about SGD in nonconvex problems,
- Intricate interplay between optimization, geometry, and noise in nonconvex learning problems.
- Answered these questions by developing a novel large deviation framework to analyze the long-term behavior of SGD.
- Coming next:
  - Analysis and design of adaptive methods
  - Understanding the implicit bias of SGD

Slides and references: [wazizian.fr](http://wazizian.fr)



## Himmelblau function

$$f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$



Himmelblau function

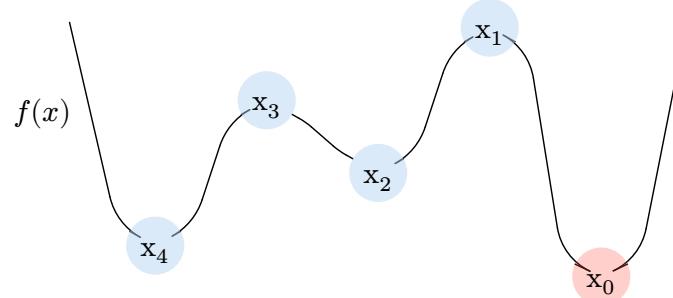
## Power-law Gaussian bounds

For Gaussian noise  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 f(x) I_d)$

**Power-law Gaussian bound:**

$$J(x) \leq \frac{2 \times \#\{\text{bad local minima}\} \times \{\log \text{max. saddle} - \log \text{min. bad local min.}\}}{\sigma^2}$$

$$J(x) \leq \frac{2 \times 2(\log f(x_1) - \log f(x_4))}{\sigma^2}$$



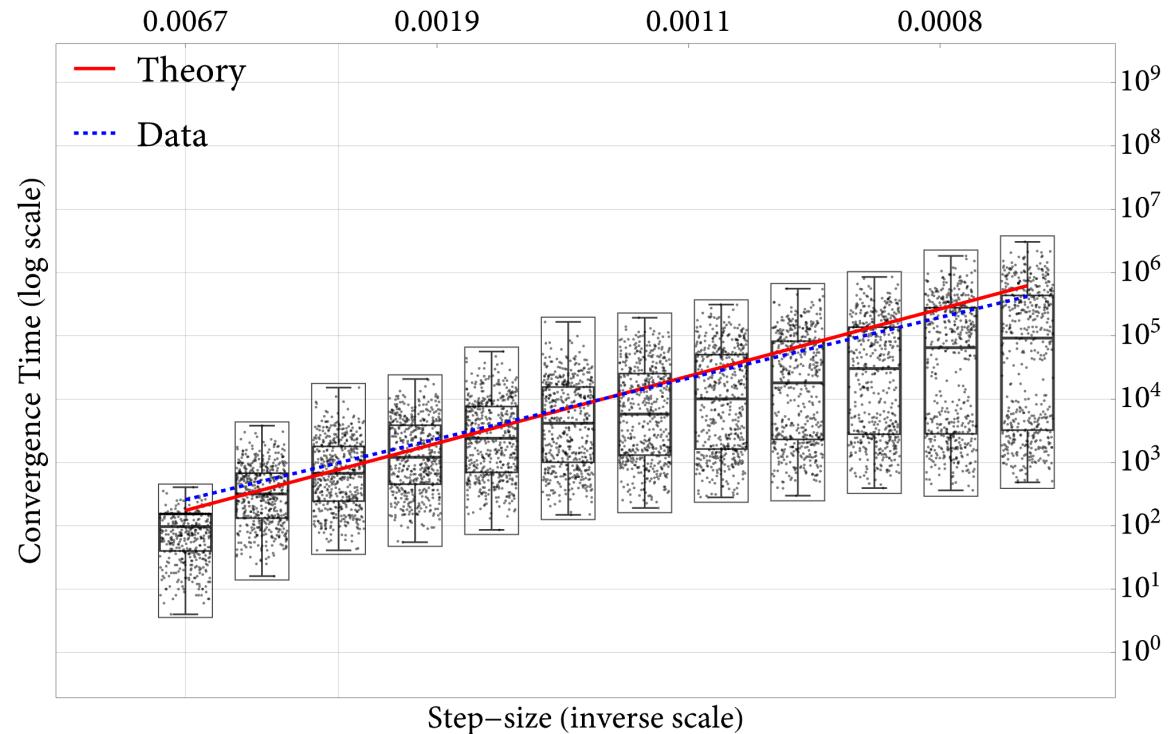
## Three Humps: Simulation

For  $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 f(x) I_d)$ ,

we predict

$$J(x) = \frac{2(\log f(x_1) - \log f(x_4))}{\sigma^2}$$

$$\log \tau \approx \frac{2(\log f(x_1) - \log f(x_4))}{\sigma^2} \times \frac{1}{\eta}$$

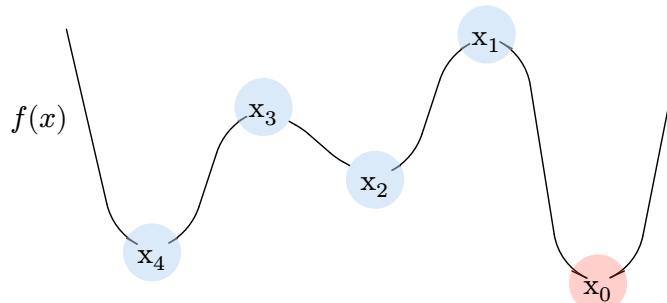


## Generic bounds for energy

If  $K_{i^*} = \operatorname{argmin} f$ ,

$$\sup_{j \neq i^*} \{E_{i^*} - E_j\} \leq \frac{2 \times \#\{\text{bad local minima}\} \times \{\text{max. saddle} - \text{min. bad local min.}\}}{\sigma_{\text{others}}^2} - \frac{2\{\text{depth of global min.}\}}{\sigma_{i^*}^2}$$

where  $\sigma_{i^*}^2$  “upper bound” on the noise at  $K_{i^*}$  and  $\sigma_{\text{others}}^2$  “lower bound” on the noise at other components

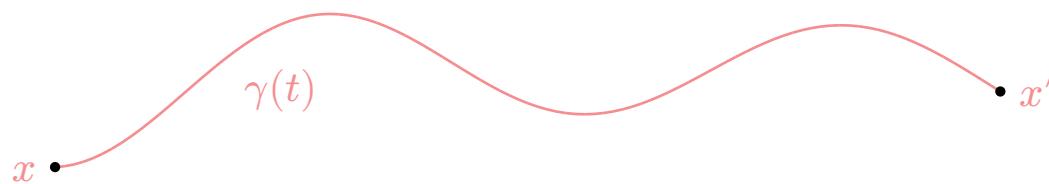


# Quasi-potential

Following Kifer (1988), for any  $x, x'$

$$B(x, x') = \inf\{\mathcal{S}_T[\gamma] \mid \gamma(0) = x, \gamma(T) = x', T \in \mathbb{N}\}$$

“ $B(x, x')$  quantifies how probable a transition from  $x$  to  $x'$  is”



## Key observations:

- If there is a trajectory of the gradient flow joining  $x$  and  $x'$ , then  $B(x, x') = 0$
- We can show:

$$B(x, x') \geq \frac{2(f(x') - f(x))}{\sigma^2}$$

## Induced chain

Recall:

$$\text{crit}(f) := \{x : \nabla f(x) = 0\} = \{K_1, K_2, \dots, K_p\} \text{ with } K_i \text{ connected components}$$

*(Conceptual) induced chain:*

$z_n = i$  if the  $n$ -th visited component is  $K_i$  (up to a small neighborhood)

**Goal:** show that  $z_n$  captures the long-run behavior of SGD

Two key ingredients:

**Ingredient 1** The behavior of SGD started at  $x_0 \in K_i$  depends only on  $i$ .

**Ingredient 2** SGD spends most of its time it near  $\text{crit}(f)$ .

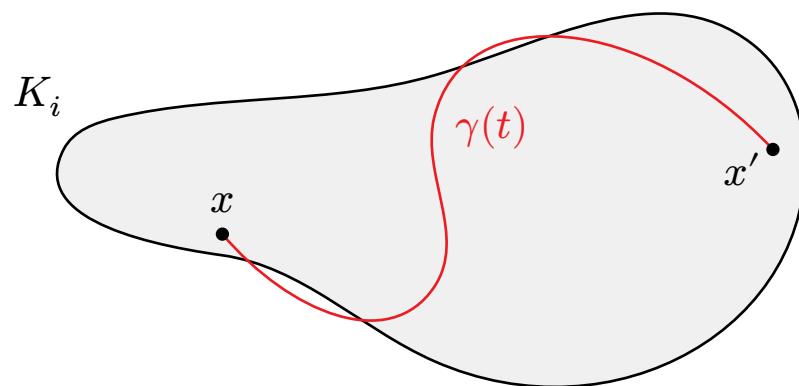
# Ingredient 1

**Equivalence relation:**

$$\text{for } x, x' \in \text{crit}(f), \quad x \sim x' \Leftrightarrow B(x, x') = B(x', x) = 0$$

**Proposition:**

*if the  $K_i$  are connected by smooth arcs, the equivalence classes of  $\sim$  are exactly  $K_1, \dots, K_p$*

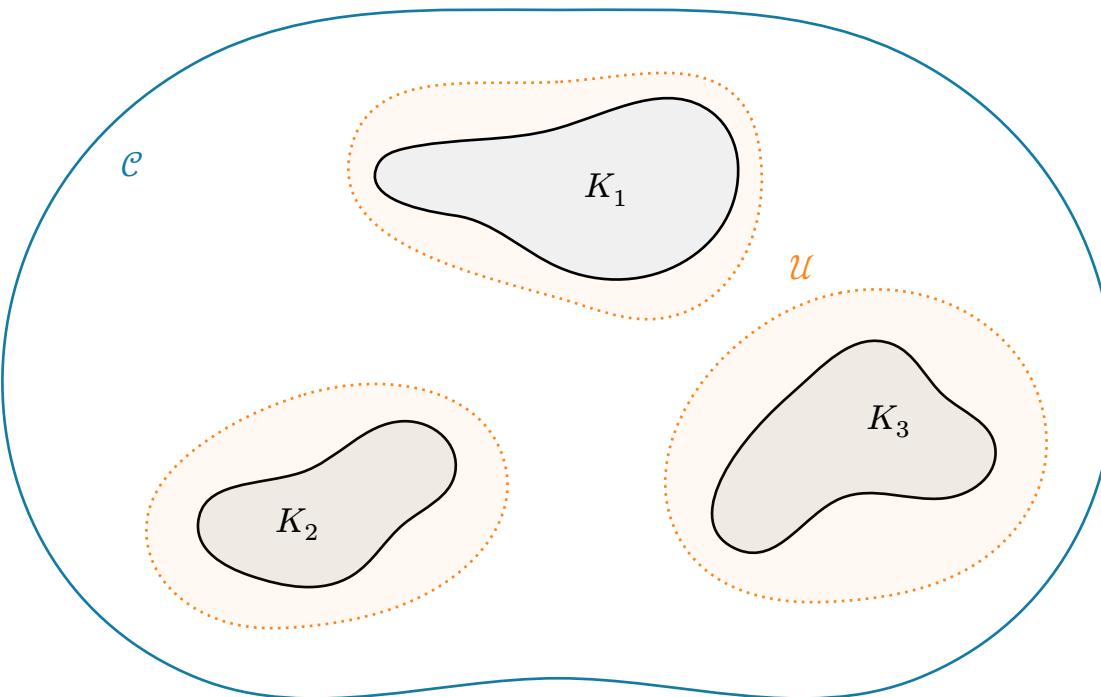


“Behaviour of SGD started at  $x \approx$  Behaviour of SGD started at  $x'$ ”

## Ingredient 2

**Proposition:** given  $\text{crit}(f) \subset \mathcal{U} \subset \mathcal{C}$  with  $\mathcal{U}$  open,  $\mathcal{C}$  compact, for  $\eta > 0$  small enough,

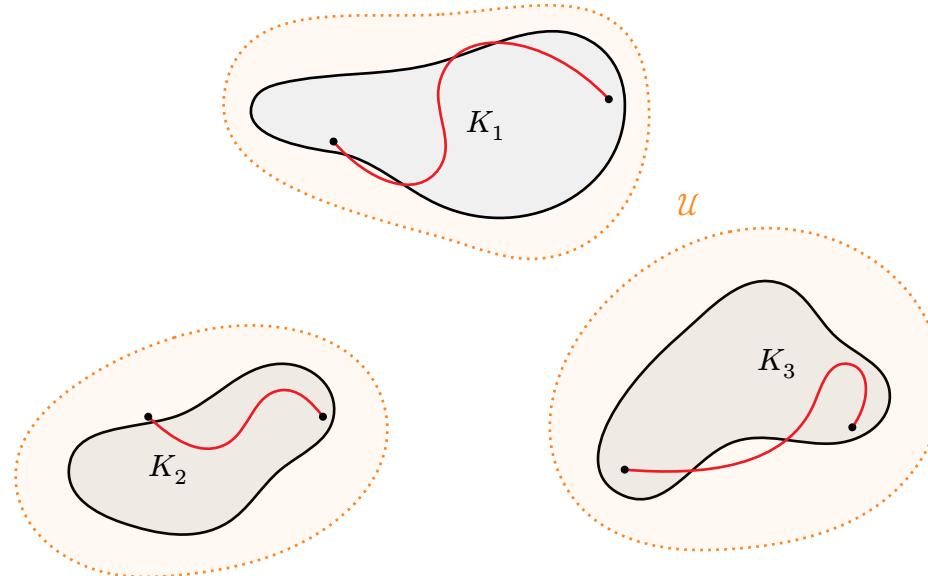
$$\forall x \in \mathcal{C}, \quad \mathbb{P}\left(\text{SGD started at } x \text{ reaches } \mathcal{U} \text{ in } \geq n \text{ steps}\right) \leq e^{-\Omega(\frac{n}{\eta})}$$



# Induced chain

(Conceptual) induced chain:

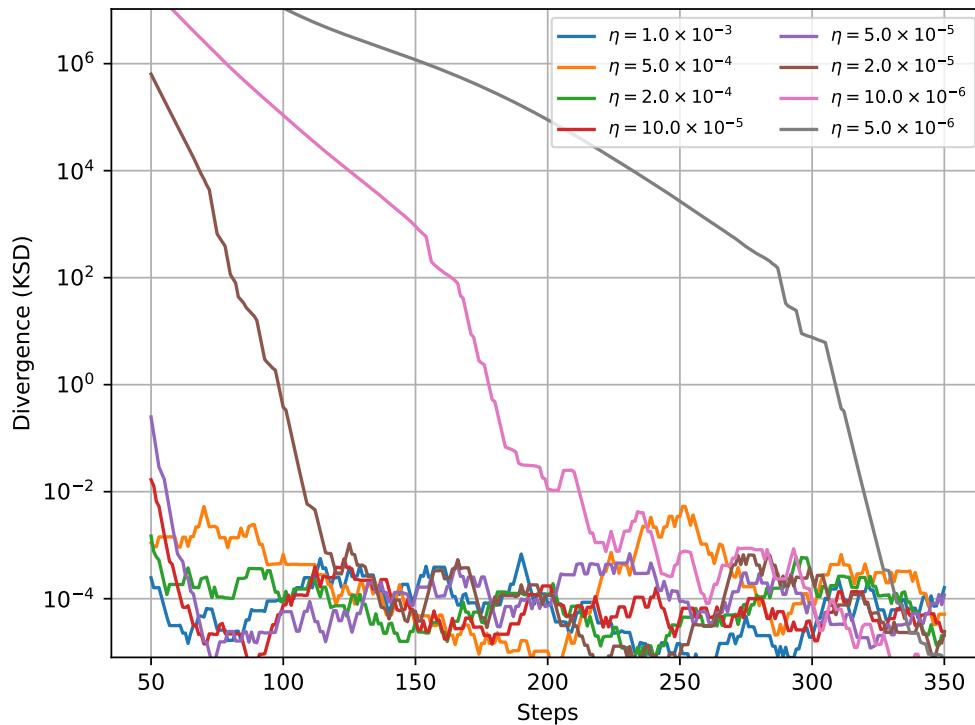
$z_n = i$  if the  $n$ -th visited component is  $K_i$  (up to a small neighborhood)



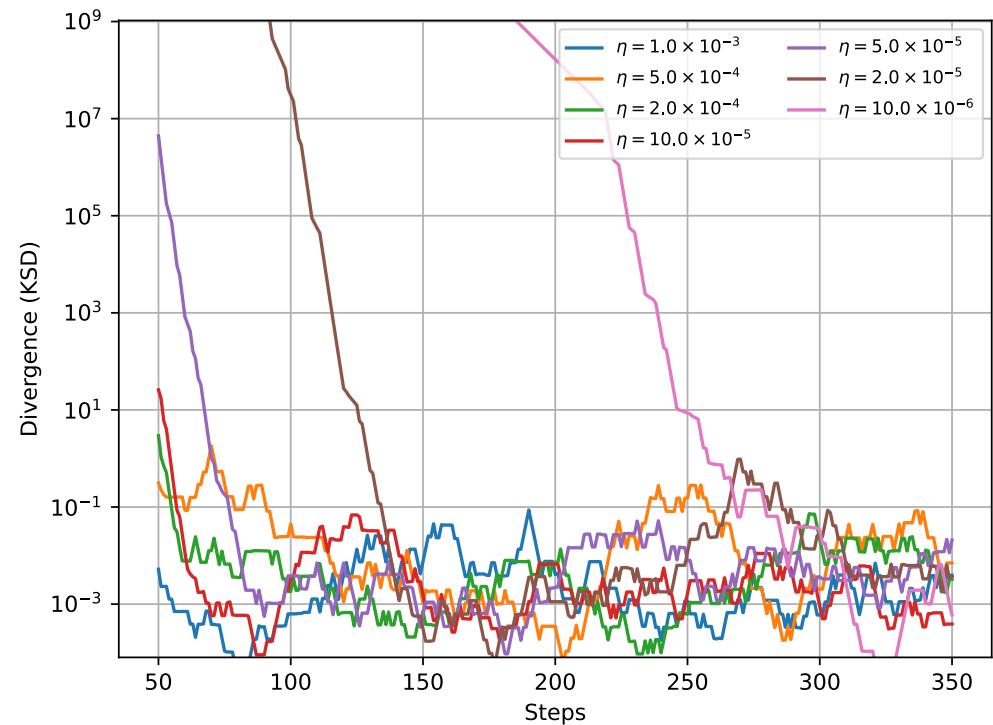
**Ingredients 1 + 2 imply**

The induced chain  $z_n$  captures the long-run behavior of SGD

## Example: Back to Himmelblau



Divergence between iterates and Gibbs  
 $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 I_d)$



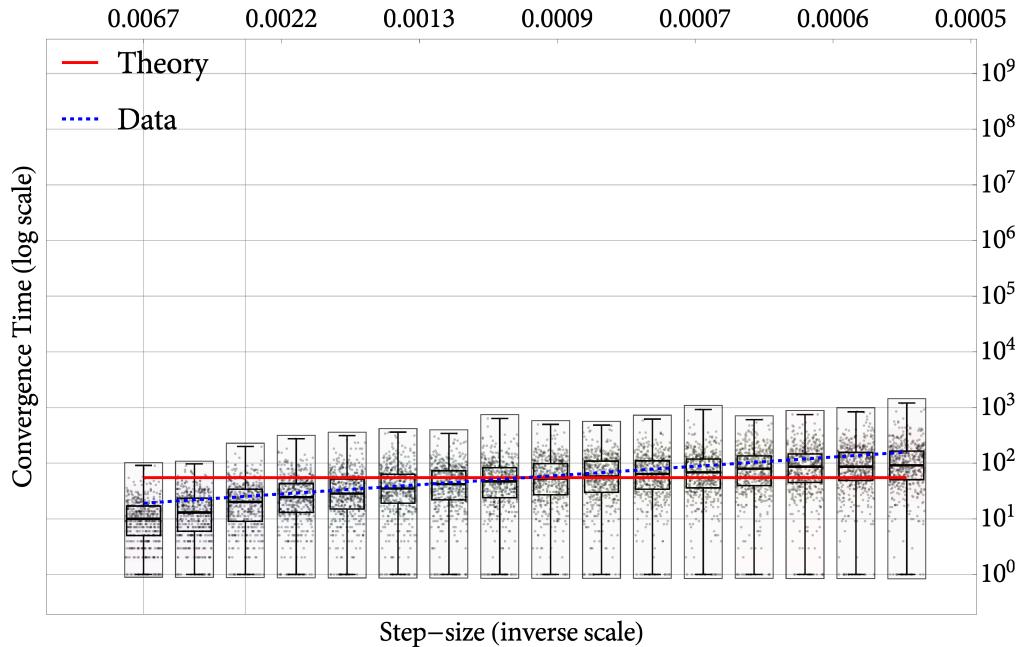
Divergence between iterates and Power-law  
 $Z(x; \omega) \sim \mathcal{N}(0, \sigma^2 f(x) I_d)$

## No spurious local minima: Simulation

Consider a non-convex function (with maxima and saddles) but no spurious local minima:

We predict  $E = 0$  and thus

$$\log \tau = \text{cst}$$



## Attempt with SDE

1. Approximate SGD by an SDE:

$$dX_t = -\nabla f(X_t)dt + \sqrt{\eta\Sigma(X_t)}dW_t$$

2. Combine with the exponential convergence of the SDE to its invariant measure

$$X_t \xrightarrow[t \rightarrow \infty]{} \mu_\infty$$

**But:** convergence speed of the SDE is not fast enough to compensate for the approximation error!