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TLDR: We characterize the average time for SGD to reach the global minimum of a
non-convex function throug a large deviations approach.

Problem of interest
minimize

𝑥∈ℝ𝑑
𝑓(𝑥)

Stochastic Gradient Descent (SGD):

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 [∇𝑓(𝑥𝑡) + 𝑍(𝑥𝑡; 𝜔𝑡)]

zero-mean noisestep-size

Basic assumptions:
• 𝑓  is 𝛽-smooth: ‖∇𝑓(𝑥) − ∇𝑓(𝑥′)‖ ≤ 𝛽‖𝑥 − 𝑥′‖ for all 𝑥, 𝑥′

• 𝑓  is coercive: lim‖𝑥‖→∞ 𝑓(𝑥) = +∞

Regularity assumption:

crit(𝑓) ≔ {𝑥 ∈ ℝ𝑑 | ∇𝑓(𝑥) = 0} = ⋃𝑁−1
𝑖=0 𝐾𝑖, where 𝐾𝑖 (smoothly) connected components

Global convergence time of SGD

Hitting time: with margin 𝛿 > 0,
𝜏 = min{𝑡 ∈ ℕ | dist(𝑥𝑡, argmin 𝑓) ≤ 𝛿}

Core Question: What is 𝔼𝑥[𝜏 ] for SGD started at 𝑥?

Noise assumptions:
• 𝔼[𝑍(𝑥; 𝜔)] = 0, cov(𝑍(𝑥; 𝜔)) ≻ 0, 𝑍(𝑥; 𝜔) = 𝑂(‖𝑥‖)
• 𝑍(𝑥; 𝜔) is 𝜎 sub-Gaussian:

log 𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩] ≤ 𝜎2

2 ‖𝑣‖2

• Sufficient SNR:
lim inf‖𝑥‖→∞

‖∇𝑓(𝑥)‖2

𝜎2 ≥ some constant

Example (Finite-sum): 𝑓(𝑥) = 1
𝑛 ∑𝑛

𝑖=1 𝑓𝑖(𝑥) + 𝜆
2 ‖𝑥‖2 with 𝑓𝑖 Lipschitz and smooth; 𝑍(𝑥; 𝜔) = ∇𝑓𝜔(𝑥) − ∇𝑓(𝑥)

Large deviations for SGD

Consider 𝛾 : [0, 𝑇 ] → ℝ𝑑 continuous path, ℙ(SGD ≈ 𝛾) = ? 𝛾

Key lemma: SGD admits a large deviation principle as 𝜂 → 0: for any path 𝛾 : [0, 𝑇 ] → ℝ𝑑,

ℙ(SGD on[0, 𝑇 /𝜂] ≈ 𝛾) ≈ exp(−𝒮𝑇 [𝛾]
𝜂

) where 𝒮𝑇 [𝛾] = ∫
𝑇

0
ℒ(𝛾𝑡, ̇𝛾𝑡)𝑑𝑡

From (Azizian et al., 2024) using tools from (Freidlin & Wentzell, 1998; Dupuis, 1988)

Cumulant generating function / Hamiltonian: ℋ(𝑥, 𝑣) = log 𝔼[𝑒⟨𝑣,𝑍(𝑥;𝜔)⟩]

Lagrangian: ℒ(𝑥, 𝑣) = ℋ∗(𝑥, −𝑣 − ∇𝑓(𝑥)))

Example (Gaussian noise): 𝑍(𝑥; 𝜔) ∼ 𝑁(0, 𝜎2𝐼𝑑), ℋ(𝑥, 𝑣) = 𝜎2

2 ‖𝑣‖2 and ℒ(𝑥, 𝑣) = ‖𝑣+∇𝑓(𝑥)‖2

2𝜎2

𝒮𝑇 [𝛾] = 1
2𝜎2 ∫

𝑇

0
‖ ̇𝛾𝑡 + ∇𝑓(𝛾𝑡)‖

2𝑑𝑡

Key findings:
• Global convergence time of SGD: starting at 𝑥, time 𝜏  to reach argmin 𝑓  satisfies

𝔼𝑥[𝜏 ] ≈ exp(𝐸(𝑥)
𝜂

)

where 𝐸(𝑥) energy of SGD starting at 𝑥
• Key quantity 𝐸(𝑥): geometric measure of problem’s hardness, it captures

• The difficulty of the loss landscape: hardest set of obstacles to overcome to reach argmin 𝑓
• The statistics of the noise: scales with inverse square of the noise level

• Transfer of geometrical properties: shallow local minima ⇒ small 𝐸(𝑥)

Challenges and techniques:

• Requires tools to analyze the long-run distribution of SGD in non-convex problems
• We leverage large deviation theory and the theory of random dynamical systems,

→ Estimate the probability of rare events, such as SGD switching from one local minima to another

• We adapt & refine Freidlin & Wentzell (1998); Kifer (1988), building on Azizian et al. (2024)
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Transition between critical points
Given 𝐾𝑖, 𝐾𝑗 critical points, when and how fast does SGD transition from 𝐾𝑖 to 𝐾𝑗  without hitting argmin 𝑓?

𝐾𝑗𝐾𝑖 𝛾(𝑡)

Transition cost from 𝐾𝑖 to 𝐾𝑗:

𝐵𝑖,𝑗 = inf{𝒮𝑇 [𝛾] | 𝛾(0) ∈ 𝐾𝑖, 𝛾(𝑇 ) ∈ 𝐾𝑗, 𝑇 ∈ ℕ, 𝛾(𝑛) ∉ argmin 𝑓 for𝑛 = 0, …, 𝑇 − 1}

Proposition: Transition probability from 𝐾𝑖 to 𝐾𝑗 without hitting argmin 𝑓 : for 𝜂 > 0 small enough,

ℙ(SGD transitions from𝐾𝑖 to 𝐾𝑗) = exp(−
𝐵𝑖,𝑗 + 𝒪(𝜀)

𝜂
) with average transition time = exp(𝒪(𝜀)

𝜂
)

Technical assumption: 𝐵𝑖,𝑗 < +∞ for all 𝑖, 𝑗

Transition graph: complete graph on {0, …, 𝑁 − 1} with weights 𝐵𝑖,𝑗 on 𝑖 → 𝑗

Energy of 𝐾0 = argmin 𝑓 :

𝐸0 = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 0}

𝐵0,1

𝐵0,2

𝐵0,3

𝐵1,0

𝐵1,2

𝐵1,3

𝐵2,0

𝐵2,1
𝐵2,3

𝐵3,0

𝐵3,1

𝐵3,2

0

1

2

3

Energy of pruning 𝐾𝑖:

𝐸(𝑖 ↛ 0) = min{ ∑
𝑗→𝑘∈𝑇

𝐵𝑗,𝑘 | 𝑇 spanning tree pointing to 0 with an edge from 𝑖 to 0 removed}

Energy of 𝐾0 relative to 𝐾𝑖:

𝐸(𝑖) = 𝐸0 − 𝐸(𝑖 ↛ 0)
Energy of 𝐾0 relative to 𝑥:

𝐸(𝑥) = max
𝑖=1,…,𝑁−1

[𝐸(𝑖) − 𝐵(𝑥, 𝑖)]+

where 𝐵(𝑥, 𝑖) cost of the transition from 𝑥 to 𝐾𝑖

Theorem
For any 𝜀 > 0, if 𝜂, 𝛿 > 0 are small enough, then, for SGD started at 𝑥,

exp(𝐸(𝑥) − 𝜀
𝜂

) ≤ 𝔼𝑥[𝜏 ] ≤ exp(𝐸(𝑥) + 𝜀
𝜂

)

where the LHS holds under a technical condition involving the “strength of attrcation” of the argmin 𝑓

Interpretation:
𝐸(𝑥) = 0 ∀𝑥 ⟺ 𝐸(𝑖) = 0 ∀𝑖 ⟺ no spurious local minima

Example: Three Humps, Gaussian noise
𝑍(𝑥; 𝜔) ∼ 𝑁(0, 𝜎2𝐼𝑑) (truncated)

Transition cost of neighboring critical points 𝑖 → 𝑗:

𝐵𝑖,𝑗 =
2[𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)]+

𝜎2

Energy of 𝑥0 = argmin 𝑓  relative to 𝑥 near 𝑥2:

𝐸(𝑥) = 2(𝑓(𝑥1) − 𝑓(𝑥4))
𝜎2

𝑓(𝑥)
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