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TLDR: We characterize the average time for SGD to reach the global minimum of a
non-convex function throug a large deviations approach.

Problem of interest
miniglize f(x)
reRA

Stochastic Gradient Descent (SGD):
L1 = Ly — 1] V() + Z(2;w;)

step-size Zero-mean noise

Basic assumptions:
« fis g-smooth: |Vf(x)—Vf(z")| <pB|e—2a"| forallz,a’

* fiscoercive:  limy, ., f(z) = +o0

Regularity assumption:
crit(f) == {z €R? | Vf(z) =0} =, 'K,

1)

where K, (smoothly) connected components

Global convergence time of SGD

Hitting time: with margin § > 0,
7 = min{t € N | dist(x,, argmin f) < §}

Core Question: What is E_[r] for SGD started at z?

Noise assumptions:
e E[Z(x;w)] =0, cov(Z(z;w)) = 0, Z(x;w) = O(|x|)
e Z(x;w) IS o sub-Gaussian:

log]E -6<U7Z($;w>>] S 0-72”/()“2
o Sufficient SNR: '

2
'V{f;”)” > some constant

hm lnf” T ” o0

Example (Finite-sum): f(z) = = Y7 | fi(z) + 2]z|* with £; Lipschitz and smooth; Z(z;w) = V,(z) — V f(x)

Large deviations for SGD

Consider v : [0, T] — R? continuous path, P(SGD ~ «) = ?

7

Key lemma: SGD admits a large deviation principle as n — 0: for any path ~ : [0,T] — R¢,

P(SGD on|0,T/n| ~ v) ~ exp( STUM) where Sr|v] = /,C(yt,%)dt

\.

From (Azizian et al.,, 2024) using tools from (Freidlin & Wentzell, 1998; Dupuis, 1988)

Cumulant generating function / Hamiltonian:  #(z,v) = logE[e!»Z(@«)]
Lagrangian: L(z,v) = H*(x,—v—V[f(z)))
Fxample (Gaussian noise): Z(z;w) ~ N(0,0%1,), # (z,v) = % |v|? and £(z,v) = ””+Z§2<=’B>||2
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The Global Convergence Time of SGD in Non-Convex Landscapes

Sharp Estimates via Large Deviations

W. Azizian, F. lutzeler, J. Malick, P. Mertikopoulos
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Step—size (inverse scale)
Key findings:
 Global convergence time of SGD: starting at z, time 7 to reach argmin f satisfies
F(z)
E_[7] ~ exp ( ,

where E(x) energy of SGD starting at «

 Key quantity E(x): geometric measure of problem’s hardness, it captures

e The difficulty of the loss landscape: hardest set of obstacles to overcome to reach argmin f
« The statistics of the noise: scales with inverse square of the noise level

 Transfer of geometrical properties: shallow local minima = small E(x)

Challenges and techniques:

« Requires tools to analyze the long-run distribution of SGD In non-convex problems

« We leverage large deviation theory and the theory of random dynamical systems,
— Estimate the probability of rare events, such as SGD switching from one local minima to another

« We adapt & refine Freidlin & Wentzell (1998); Kifer (1988), building on Azizian et al. (2024)

References

Fretdlin, M. |., & Wentzell, A. D., 1998. Random perturbations of dynamical systems. Springer
Kifer, Y., 1988. Random perturbations of dynamical systems. Birkhauser

Azizian, W., lutzeler, F.,, Malick, J., and Mertikopoulos, P, 2024. What is the Long-Run Distribution of Stochastic Gradient
Descent? A Large Deviations Analysis. ICML 2024

International Conference I : I
On Machine Learning D s

¥ arxiv:2503.16398

Transition between critical points

Given K, K; critical points, when and how fast does SGD transition from K; to K; without hitting argmin f?

Transition cost from K; to K :

B; ; =inf{87[y] | 7(0) € K;,7(T) € K,;,T € N,~(n) ¢ argmin f forn=0,...,T — 1}

é )

Proposition: Transition probability from K, to K; without hitting argmin f: for n > 0 small enough,

N N

B B, .+ 0(e , . 0
P(SGD transitions fromK; to K ;) = exp( J ( )> with average transition time = exp( (8))

. J

Technical assumption: B; ; < +oc for all 4, j 0

Transition graph: complete graph on {0, ..., N — 1} with weights B, ; oni — j 4/\\301
BBO ,
Eﬂergy Of KO — argmin f.' / By, B1,0\
B

) < v B13>
E, = min{ » B, | T spanning tree pointing to 0 \33,2 Bao K/'
j—keT y \\/ H2
N

Energy of pruning K,:

E(i+0) = min{ Y B, | T spanning tree pointing to 0 with an edge from i to 0 removed}
J—keT

Energy of K, relative to K :
E(i)=E, — E(i + 0)
Energy of K, relative to x:

B(a) = _max [B()— Bla,i)],

where B(x,) cost of the transition from x to K,

a )
Theorem
Forany e >0, if n,d > 0 are small enough, then, for SGD started at =,
exp(E(x) — 8) <E_,[7] < exp(E(x) i 8)
7 7

where the LHS holds under a technical condition involving the “strength of attrcation” of the argmin f

Interpretation:
E(zx) =0 Ve < E(1) =0 Vi < no spurious local minima

Example: Three Humps, Gaussian noise
Z(z;w) ~ N(0,0°1,) (truncated)

Transition cost of neighboring critical points ¢ — j:

f(x) /X?’\ /

Energy of z, = argmin f relative to x near x,:

o2
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