Regularization for Wasserstein Distributionally Robust Optimization

Waïss Azizian

PhD student under the supervision of Franck lutzeler, Jérôme Malick and Panayotis Mertikopoulos

May 2022

Outline

- 1. Quick introduction to WDRO
- 2. Regularizing WDRO
- 3. "Robust" generalization properties with WDRO

Robust ML

We want ML models not to fail when applied in the real-world

Shifts in distribution:

"Snow Road" by Yuichiro Haga, under CC BY 2.0, creativecommons.org/licenses/by/2.0/?ref=openverse. "Pioneertown Road - California" by ChrisGoldNY, under CC BY-NC 2.0,

creativecommons.org/licenses/by-nc/2.0/?ref=openverse.

Learning framework: from ERM to DRO

► Training data $\xi_1, \ldots, \xi_n \sim P_{train}$, where P_{train} unknown, belgonging to $\Xi \subset \mathbb{R}^d$ e.g., $\xi_i = (x_i, y_i)$ where x_i input, y_i label/target

- Objective f_θ : Ξ → ℝ, parameterized by θ e.g., logistic regression f_θ(ξ) = f_θ((x, y)) = log(1 + e^{-y⟨θ,x⟩})
- Empirical Risk Minimization (ERM)

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(\xi_i)$$

Learning framework: from ERM to DRO

► Training data $\xi_1, \ldots, \xi_n \sim P_{train}$, where P_{train} unknown, belgonging to $\Xi \subset \mathbb{R}^d$ e.g., $\xi_i = (x_i, y_i)$ where x_i input, y_i label/target

- Objective f_θ : Ξ → ℝ, parameterized by θ e.g., logistic regression f_θ(ξ) = f_θ((x, y)) = log(1 + e^{-y⟨θ,x⟩})
- Empirical Risk Minimization (ERM)

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(\xi_{i}) = \mathbb{E}_{\xi \sim \hat{P}_{n}} f_{\theta}(\xi) \quad \text{with } \hat{P}_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_{i}}$$

Learning framework: from ERM to DRO

- ► Training data $\xi_1, \ldots, \xi_n \sim P_{train}$, where P_{train} unknown, belgonging to $\Xi \subset \mathbb{R}^d$ e.g., $\xi_i = (x_i, y_i)$ where x_i input, y_i label/target
- Objective f_θ : Ξ → ℝ, parameterized by θ e.g., logistic regression f_θ(ξ) = f_θ((x, y)) = log(1 + e^{-y⟨θ,x⟩})
- Empirical Risk Minimization (ERM)

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(\xi_{i}) = \mathbb{E}_{\xi \sim \hat{P}_{n}} f_{\theta}(\xi) \quad \text{with } \hat{P}_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_{i}}$$

- $ightarrow \,$ Take into account uncertainty in the training data
- Distributionally Robust Optimization (DRO):

$$\min_{\theta} \sup_{Q \in \mathcal{U}(\hat{P}_n)} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)] \quad \text{where } \mathcal{U}(\hat{P}_n) \text{ ambiguity set}$$

Distributionally Robust Optimization

 $\min_{\theta} \sup_{Q \in \mathcal{U}(\hat{P}_n)} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$

Choice of ambiguity set $\mathcal{U}(\hat{P}_n)$

• $U(\hat{P}_n)$ defined by moment constraints (Delage and Ye, 2010).

Through distance/divergence

$$\mathcal{U}(\hat{P}_n) = \{Q : \mathsf{dist}(Q, \hat{P}_n) \leq \rho\}$$

with e.g., KL, MMD...

This talk: Wasserstein distance

 $\mathcal{U}(\hat{P}_n) = \{Q: W_p(Q, \hat{P}_n) \leq \rho\}$

Popular recently: nice theoretical/practical properties (Mohajerin Esfahani and Kuhn, 2018)

Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for *P*, *Q* probability distributions on Ξ ,

Transport plan between two probabilities on \mathbb{R} :

"Transport a pile of sand onto another one: $\pi(\xi, \zeta) =$ mass of sand taken from *P* at ξ to put at ζ for Q"

commons.wikimedia.org/w/index.php?curid=64872543

Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for *P*, *Q* probability distributions on Ξ ,

$$\mathcal{W}_{\rho}(\mathcal{P}, Q) = \inf \left\{ \mathbb{E}_{(\xi, \zeta) \sim \pi} \| \xi - \zeta \|^{\rho} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = \mathcal{P}, \pi_2 = Q \right\}^{\frac{1}{\rho}}$$

WDRO objective:

$$\sup_{Q:W_{\rho}(\mathcal{P},Q)\leq\rho}\mathbb{E}_{\xi\sim Q}[f_{\theta}(\xi)]$$

Dual: fundamental both in theory and practice

$$\inf_{\lambda \geq 0} \lambda \rho^{p} + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} \{ f_{\theta}(\zeta) - \lambda \| \xi - \zeta \|^{p} \} \right]$$

Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for *P*, *Q* probability distributions on Ξ ,

$$W_{\rho}(P, Q) = \inf \left\{ \mathbb{E}_{(\xi, \zeta) \sim \pi} \| \xi - \zeta \|^{\rho} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = P, \pi_2 = Q \right\}^{\frac{1}{\rho}}$$

WDRO objective:

$$\sup_{Q:W_{\rho}(\mathcal{P},Q)\leq\rho}\mathbb{E}_{\xi\sim Q}[f_{\theta}(\xi)]$$

Dual: fundamental both in theory and practice

$$\inf_{\lambda \geq 0} \lambda \rho^{p} + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} \{ f_{\theta}(\zeta) - \lambda \| \xi - \zeta \|^{p} \} \right]$$

 \rightarrow For structured f_{θ} , dual simplifies (solvable as min-max, recall S. Wright's talk)

Illustration: logistic regression and distributional shift

$$\xi = (x, y)$$
 with $y \in -1, +1$

$$f_{ heta}((x,y)) = \log\left(1 + e^{-y\langle heta, x
angle}
ight)$$

Regularizing WDRO

Regularization in optimal transport

$$\inf\left\{\underbrace{\mathbb{E}_{\pi C}}_{\text{linear}} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = P, \pi_2 = Q\right\}^{\frac{1}{p}},$$

Regularization in optimal transport

$$\inf \left\{ \underbrace{\mathbb{E}_{\pi C}}_{\text{linear}} + \underbrace{\mathbb{R}(\pi)}_{\text{strongly convex}} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = P, \pi_2 = Q \right\}^{\frac{1}{p}},$$

Most popular: entropic regularization

$$R(\pi) = \varepsilon \mathsf{KL}(\pi | P \otimes Q) = \begin{cases} \varepsilon \int \log \frac{d\pi}{dP \otimes Q} dP \otimes Q & \text{if } \pi \ll P \otimes Q \\ +\infty & \text{otherwise} \end{cases}$$

- Can be computed efficiently with the Sinkhorn algorithm
- ightarrow Popularized optimal transport in the ML community (Cuturi, 2013)

Regularization in optimal transport

$$\inf \left\{ \underbrace{\mathbb{E}_{\pi C}}_{\text{linear}} + \underbrace{\mathbb{R}(\pi)}_{\text{strongly convex}} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = P, \pi_2 = Q \right\}^{\frac{1}{p}},$$

Most popular: entropic regularization

$$\mathcal{R}(\pi) = \varepsilon \mathcal{K}\mathcal{L}(\pi|P \otimes Q) = egin{cases} arepsilon \int \log rac{\mathrm{d}\pi}{\mathrm{d}P \otimes Q} \mathrm{d}P \otimes Q & ext{if } \pi \ll P \otimes Q \ +\infty & ext{otherwise} \end{cases}$$

- Can be computed efficiently with the Sinkhorn algorithm
- \rightarrow Popularized optimal transport in the ML community (Cuturi, 2013)
- Nice theoretical properties :
 - Provably approximates the unregularized Wasserstein distance (Genevay, Chizat, et al., 2019)
 - Resulting distance is smooth (Feydy et al., 2019)
 - Good statistical properties (Genevay, Chizat, et al., 2019)

Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of θ

$$\sup\left\{\underbrace{\mathbb{E}_{Q}f_{\theta}}_{\text{linear function}}: Q \in \mathcal{P}(\Xi), \underbrace{W_{p}(P, Q) \leq \rho}_{\text{non-smooth constraint}}\right\} = \inf_{\lambda \geq 0} \lambda \rho^{p} + \mathbb{E}_{\xi \sim P}\left[\underbrace{\sup_{\zeta \in \Xi} \{f_{\theta}(\zeta) - \lambda \| \xi - \zeta \|^{p}\}}_{\zeta \in \Xi}\right],$$

Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of θ

$$\sup\left\{\underbrace{\mathbb{E}_{Q}f_{\theta}}_{\text{linear function}}: Q \in \mathcal{P}(\Xi), \underbrace{W_{\rho}(P, Q) \leq \rho}_{\text{non-smooth constraint}}\right\} = \inf_{\lambda \geq 0} \lambda \rho^{\rho} + \mathbb{E}_{\xi \sim P}\left[\underbrace{\sup_{\zeta \in \Xi} \{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|^{\rho}\}}_{\zeta \in \Xi}\right]$$

Reformulation: using the definition of $W_p(P, Q)$

$$\sup\left\{\underbrace{\mathbb{E}_{\pi_{2}}f_{\theta}}_{\text{linear function}}:\pi\in\mathcal{P}(\Xi^{2}),\pi_{1}=P,\underbrace{\mathbb{E}_{(\xi,\zeta)\sim\pi}\|\xi-\zeta\|^{p}\leq\rho}_{\text{linear constraint}}\right\}$$

Regularizing the WDRO objective

Primal:

Regularizing the WDRO objective

Regularizing the WDRO objective

Primal: where
$$R, S : \mathcal{M}(\Xi^2) \to \mathbb{R} \cup \{+\infty\}$$

$$\sup \left\{ \underbrace{\mathbb{E}_{\pi_2} f_{\theta}}_{\text{linear function}} - \underbrace{R(\pi)}_{\text{(strongly) convex}} : \pi \in \mathcal{P}(\Xi^2), \pi_1 = P, \underbrace{\mathbb{E}_{(\xi,\zeta) \sim \pi}[||\xi - \zeta||^p]}_{\text{linear function}} + \underbrace{S(\pi)}_{\text{(strongly) convex}} \leq \rho \right\}$$

Dual:

$$\inf_{\lambda \geq 0} \inf_{\phi \in \mathcal{C}(\Xi^2)} \lambda \rho + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} f(\zeta) - \lambda \|\xi - \zeta\|^p - \phi(\xi, \zeta) \right] + (R + \lambda S)^*(\phi),$$

Idea of proof: on Ξ compact to use duality $\mathcal{C}(\Xi^2)^*=\mathcal{M}(\Xi^2)$

- Lagrangian duality (Peypouquet, 2015)
- Fenchel duality (Bot et al., 2009)
- Exchange sup / $\mathbb{E}[\cdot]$ (Rockafellar and Wets, 1998)

Entropic regularization

To compare with:

$$\sup_{Q \in \mathcal{P}(\Xi): W_{\rho}(P,Q) \leq \rho} \mathbb{E}_{Q} f = \inf_{\lambda \geq 0} \lambda \rho^{\rho} + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \| \xi - \zeta \|^{\rho} \} \right]$$

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)

Entropic regularization

To compare with:

$$\sup_{Q \in \mathcal{P}(\Xi): W_{\rho}(P,Q) \leq \rho} \mathbb{E}_{Q} f = \inf_{\lambda \geq 0} \lambda \rho^{\rho} + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \| \xi - \zeta \|^{\rho} \} \right]$$

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)

Choice of regularization measure

OT:

when *P*, *Q* fixed, entropic regularization w.r.t. $\pi_0 = P \otimes Q$ since

$$\pi_1 = P \text{ and } \pi_2 = Q \implies \pi \ll P \otimes Q$$

Choice of regularization measure

OT: when *P*, *Q* fixed, entropic regularization w.r.t. $\pi_0 = P \otimes Q$ since $\pi_1 = P$ and $\pi_2 = Q \implies \pi \ll P \otimes Q$

WDRO: π_2 not fixed! Choose, with $(\pi_0)_1 = P$, $\pi_0(d\xi, d\zeta) \propto P(d\xi) \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi - \zeta\|^p}{\sigma}} d\zeta$ $\pi_0(d\zeta|\xi) \propto \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi - \zeta\|^p}{\sigma}} d\zeta$

Choice of regularization measure

OT: when *P*, *Q* fixed, entropic regularization w.r.t. $\pi_0 = P \otimes Q$ since $\pi_1 = P$ and $\pi_2 = Q \implies \pi \ll P \otimes Q$

WDRO: π_2 not fixed! Choose, with $(\pi_0)_1 = P$, $\pi_0(d\xi, d\zeta) \propto P(d\xi) \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi-\zeta\|^p}{\sigma}} d\zeta$ $\pi_0(d\zeta|\xi) \propto \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi-\zeta\|^p}{\sigma}} d\zeta$

 \Rightarrow Enforces $\pi \ll$ Lebesgue

Approximation bound

Inspired by Genevay, Chizat, et al. (2019) for OT, bound the approximation error between:

$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1} = \mathcal{P}, \mathbb{E}_{(\xi, \zeta) \sim \pi}[\|\xi - \zeta\|^{p}] \leq \rho} \{\mathbb{E}_{\pi_{2}}f\}$$
(WDRO)
$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1} = \mathcal{P}, \mathbb{E}_{(\xi, \zeta) \sim \pi}[\|\xi - \zeta\|^{p}] \leq \rho} \{\mathbb{E}_{\pi_{2}}f - \varepsilon \mathsf{KL}(\pi|\pi_{0})\}$$
(\$\varepsilon - WDRO)

Proposition (A., lutzeler, Malick, 2022) .

Under regularity assumptions on f and $\Xi \subset \mathbb{R}^d$ compact, with, $\pi_0(d\xi, d\zeta) \propto P(d\xi) \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi-\zeta\|P}{\sigma}} d\zeta$ then,

$$\mathcal{O} \leq val(\mathsf{WDRO}) - val(arepsilon \cdot \mathsf{WDRO}) \leq \mathcal{O}\Big(rac{arepsilon}{arepsilon} d\log rac{1}{arepsilon} \Big)$$

Approximation bound

Inspired by Genevay, Chizat, et al. (2019) for OT, bound the approximation error between:

$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1} = \mathcal{P}, \mathbb{E}_{(\xi, \zeta) \sim \pi}[\|\xi - \zeta\|^{\rho}] \le \rho} \{\mathbb{E}_{\pi_{2}} f\}$$
(WDRO)
$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1} = \mathcal{P}, \mathbb{E}_{(\xi, \zeta) \sim \pi}[\|\xi - \zeta\|^{\rho}] \le \rho} \{\mathbb{E}_{\pi_{2}} f - \varepsilon \mathsf{KL}(\pi | \pi_{0})\}$$
(\$\varepsilon - WDRO)

Proposition (A., lutzeler, Malick, 2022) Under regularity assumptions on f and $\Xi \subset \mathbb{R}^d$ compact, with, $\pi_0(d\xi, d\zeta) \propto P(d\xi) \mathbb{1}_{\zeta \in \Xi} e^{-\frac{\|\xi - \zeta\|^p}{\sigma}} d\zeta$ then, $0 \leq val(WDRO) - val(\varepsilon WDRO) \leq O\left(\varepsilon d \log \frac{1}{\varepsilon}\right)$

Conclusion of the first part: regularize the WDRO objective

- Smooth and still tractable dual
- Provably close to original
- Interesting in practice (to be done)
- Interesting in theory (now in the second part!)

"Robust" generalization properties of WDRO

With
$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 where $\xi_i \sim P_{train}$ i.i.d. in $\Xi \subset \mathbb{R}^d$

Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if $\rho \geq \mathcal{O}\left(n^{-\frac{1}{d}}\right)$, with high probability,

$$\underbrace{\sup_{\substack{Q:W_{\rho}(\hat{P}_{n},Q) \leq \rho}} \mathbb{E}_{\xi \sim Q}[f(\xi)]}_{\text{can compute and optimize!}} \geq \underbrace{\mathbb{E}_{\xi \sim \mathcal{P}_{train}} f(\xi)}_{\text{cannot access}}$$

With
$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 where $\xi_i \sim P_{train}$ i.i.d. in $\Xi \subset \mathbb{R}^d$

Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if $ho \geq \mathcal{O} \Big(n^{-rac{1}{d}} \Big), \;\;$ with high probability,

$$\underbrace{\sup_{\substack{Q:W_p(\hat{P}_n,Q) \leq \rho}} \mathbb{E}_{\xi \sim Q}[f(\xi)]}_{\text{can compute and optimize!}} \geq \underbrace{\mathbb{E}_{\xi \sim P_{train}} f(\xi)}_{\text{cannot access}}$$

Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability

$$W_p(\hat{P}_n, P_{train}) \leq \mathcal{O}\left(n^{-\frac{1}{d}}\right)$$

With
$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 where $\xi_i \sim P_{train}$ i.i.d. in $\Xi \subset \mathbb{R}^d$

Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if $\rho \geq \mathcal{O}\left(n^{-\frac{1}{d}}\right)$, with high probability,

Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability

$$W_p(\hat{P}_n, P_{train}) \leq \mathcal{O}\left(n^{-rac{1}{d}}
ight)$$

- \rightarrow But exponential dependance in *d*...
- ► To do better: treat the WDRO objective as a whole e.g., (An and Gao, 2021) : guarantees with $\rho \propto n^{-\frac{1}{2}}$

With
$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 where $\xi_i \sim P_{train}$ i.i.d. in $\Xi \subset \mathbb{R}^d$

Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if $\rho \geq \mathcal{O}\left(n^{-\frac{1}{d}}\right)$, with high probability,

Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability

$$W_p(\hat{P}_n, P_{train}) \leq \mathcal{O}\left(n^{-\frac{1}{d}}\right)$$

- \rightarrow But exponential dependance in *d*...
- ► To do better: treat the WDRO objective as a whole e.g., (An and Gao, 2021) : guarantees with $\rho \propto n^{-\frac{1}{2}}$
- But we can do even better, especially with regularization!

What we would like

Define,

$$F_{\rho}^{\varepsilon}(f, P) = \sup_{\pi \in \mathcal{P}(\Xi^2): \pi_1 = P, \mathbb{E}_{(\xi, \zeta) \sim \pi}[\|\xi - \zeta\|^p] \le \rho} \{\mathbb{E}_{\pi_2}f - \varepsilon \mathcal{KL}(\pi | \pi_0)\}$$

and recall $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ where $\xi_i \sim P_{train}$

- Ideal result With high probability, for all $f \in \mathcal{F}$, $F_{\rho}^{\varepsilon}(f, \hat{P}_n) \ge F_{\rho-\rho_n}^{\varepsilon}(f, P_{train})$ with $\rho_n = \mathcal{O}\left(n^{-\frac{1}{2}}\right), \varepsilon \ge 0$

- Optimal requirement on radius when $n \rightarrow \infty$ (Blanchet, Murthy, and Si, 2021)
- Guarantee on the WDRO objective and ρ can be non-vanishing

Nice consequences of ideal result, e.g. case $\varepsilon = 0$

$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 with $\xi_i \sim P_{train}$

1. Generalization bound:

with high probability, $F_{\rho}(f, \hat{P}_n) \geq F_{\rho-\rho_n}(f, P_{train}) \geq \mathbb{E}_{P_{train}}f$

Nice consequences of ideal result, e.g. case $\varepsilon = 0$

$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 with $\xi_i \sim P_{train}$

1. Generalization bound:

with high probability, $F_{\rho}(f, \hat{P}_n) \geq F_{\rho-\rho_n}(f, P_{train}) \geq \mathbb{E}_{P_{train}}f$

2. Distribution shift: $P_{train} \neq P_{test}$ i.e. $W_2(P_{train}, P_{test}) > 0$

with high probability,
$$F_{\rho}(f, \hat{P}_n) \geq F_{\rho-\rho_n}(f, P_{train})$$

 $\geq \mathbb{E}_{P_{test}} f$
when $\rho - \rho_n \geq W_2(P_{train}, P_{test})$

Can we have this ideal result?

Yes!

Existing works:

- In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
- With error terms and obligatory vanishing ρ (An and Gao, 2021)

Can we have this ideal result?

Yes!

Existing works:

- In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
- With error terms and obligatory vanishing ρ (An and Gao, 2021)

Our work: version of the ideal result (A., lutzeler, Malick, 2022)

- \blacktriangleright \equiv compact and p = 2
- $\varepsilon > 0$ (at least today)
- ► + assumptions about *F*, etc...

Idea of proof:

- 1. Why we need to lower bound λ
- 2. How we lower bound λ

Idea of proof 1: Why we need to lower bound λ

Recall, for $\varepsilon > 0$, $F_{\rho}^{\varepsilon}(f, P) = \sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1} = P, \mathbb{E}_{(\xi, \zeta) \sim \pi} \left[\|\xi - \zeta\|^{2} \right] \le \rho} \{\mathbb{E}_{\pi_{2}} f - \varepsilon \mathcal{K}L(\pi | \pi_{0}) \}$ $= \inf_{\lambda \ge 0} \lambda \rho^{2} + \mathbb{E}_{\xi \sim \hat{P}_{n}} \left[\log \left(\mathbb{E}_{\zeta \sim \pi_{0}(\cdot | \xi)} \left[e^{\frac{f(\zeta) - \lambda \|\xi - \zeta\|^{2}}{\varepsilon}} \right] \right) \right]$

- Lemma For $\rho > 0$, $\varepsilon > 0$ assume that there is some $\underline{\lambda}(\rho) > 0$ such that, with high probability,

$$\forall f \in \mathcal{F}, \quad F^{\varepsilon}_{\rho}(f, \hat{P}_n) = \inf_{\lambda \geq \underline{\lambda}(\rho)} \ \lambda \rho^2 + \mathbb{E}_{\xi \sim \hat{P}_n} \bigg[\log \bigg(\mathbb{E}_{\zeta \sim \pi_0(\cdot|\xi)} \bigg[e^{\frac{f(\zeta) - \lambda \|\xi - \zeta\|^2}{\varepsilon}} \bigg] \bigg) \bigg]$$

then we get the ideal result: with high probability, for all $f \in \mathcal{F}$,

$$F_{
ho}^{arepsilon}(f,\hat{P}_n)\geq F_{
ho-
ho_n}^{arepsilon}(f,P_{train})$$

with

$$\rho_n = \mathcal{O}\left(rac{1}{\underline{\lambda}(
ho)
ho\sqrt{n}}
ight)$$

 \Rightarrow Need a lower bound $\underline{\lambda}(\rho)$ on the optimal dual multiplier for \hat{P}_n

Idea of proof 2: How we lower bound λ

Ideal theorem

– Theorem (informal) (A., lutzeler, Malick, 2022) ____ For $\varepsilon \propto \rho$, with

$$\rho_n = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),$$

if

$$\rho_n \leq \rho \leq \frac{\rho_c}{2} - \mathcal{O}\left(n^{-\frac{1}{2}}\right), \quad \rho_c \geq \mathcal{O}\left(n^{-\frac{1}{6}}\right)$$

then, with high probability,

$$\forall f \in \mathcal{F}$$
, $F_{
ho}^{arepsilon}(f, \hat{P}_n) \geq F_{
ho-
ho_n}^{arepsilon}(f, P_{train})$

Ideal theorem

Theorem (informal) (A., lutzeler, Malick, 2022) For $\varepsilon \propto \rho$, with $\rho_n = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$, if $\rho_n \leq \rho \leq \frac{\rho_c}{2} - \mathcal{O}\left(n^{-\frac{1}{2}}\right), \quad \rho_c \geq \mathcal{O}\left(n^{-\frac{1}{6}}\right)$ then, with high probability, $\forall f \in \mathcal{F}, \quad F_{\rho}^{\varepsilon}(f, \hat{P}_n) \geq F_{\rho-\rho_n}^{\varepsilon}(f, P_{train})$

Remark: extends to unregularized (arepsilon=0) with stronger assumptions on $\mathcal F$

Conclusion

Main takeaways:

- > Present regularization for WDRO: smooth dual and still provably close to the original
- New generalization bounds for WDRO, especially for regularized WDRO

Conclusion

Main takeaways:

- > Present regularization for WDRO: smooth dual and still provably close to the original
- New generalization bounds for WDRO, especially for regularized WDRO

Future work:

- Wrap up the paper ©
- Generalize the current generalization bounds (non-compact, $p \neq 2$, other regularizations...)
- Efficient and scalable computational methods

Azizian, lutzeler, Malick (2022). "Regularization for Wasserstein Distributionally Robust Optimization". *arXiv:2205.08826, submitted.* Azizian, lutzeler, Malick (2022). "Robust Generalization Bounds for Wasserstein Distributionally Robust Optimization". *to be submitted.*

Bibliography I

An, Yang and Rui Gao (2021). "Generalization Bounds for (Wasserstein) Robust Optimization". In: Advances in Neural Information Processing Systems 34.

Blanchet, Jose and Yang Kang (2020). "Semi-Supervised Learning Based on Distributionally Robust Optimization". In: Data Analysis and Applications 3. John Wiley & Sons, Ltd, pp. 1–33. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119721871.ch1.

- Blanchet, Jose, Karthyek Murthy, and Nian Si (Mar. 3, 2021). "Confidence Regions in Wasserstein Distributionally Robust Estimation". URL: http://arxiv.org/abs/1906.01614.
- Blanchet, Jose, Karthyek Murthy, and Fan Zhang (June 6, 2020). "Optimal Transport Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes". URL: http://arxiv.org/abs/1810.02403.
- **Bot, Radu Ioan, Sorin-Mihai Grad, and Gert Wanka (2009).** *Duality in Vector Optimization.* Vector Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg. URL: http://link.springer.com/10.1007/978-3-642-02886-1.
- Carlier, Guillaume et al. (Jan. 1, 2017). "Convergence of Entropic Schemes for Optimal Transport and Gradient Flows". In: SIAM J. Math. Anal. 49, pp. 1385–1418. URL: https://epubs.siam.org/doi/10.1137/15M1050264.

Bibliography II

- Chen, Ruidi and Ioannis Ch Paschalidis (2018). "A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization". In: J. Mach. Learn. Res. 19, 13:1–13:48. URL: http://jmlr.org/papers/v19/17-295.html.
- Cuturi, Marco (2013). "Sinkhorn Distances: Lightspeed Computation of Optimal Transport". In: Advances in Neural Information Processing Systems. Vol. 26. Curran Associates, Inc. URL: https://papers.nips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html.
- Delage, Erick and Yinyu Ye (June 1, 2010). "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems". In: *Operations Research* 58, pp. 595–612. URL: https://pubsonline.informs.org/doi/10.1287/opre.1090.0741.
- Feydy, Jean et al. (Apr. 11, 2019). "Interpolating between Optimal Transport and MMD Using Sinkhorn Divergences". In: *The 22nd International Conference on Artificial Intelligence and Statistics*. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2681–2690. URL: https://proceedings.mlr.press/v89/feydy19a.html.
- Fournier, Nicolas and Arnaud Guillin (Aug. 1, 2015). "On the Rate of Convergence in Wasserstein Distance of the Empirical Measure". In: *Probab. Theory Relat. Fields* 162, pp. 707–738. URL: https://doi.org/10.1007/s00440-014-0583-7.

Gao, Rui, Xi Chen, and Anton J. Kleywegt (Oct. 30, 2020). "Wasserstein Distributionally Robust Optimization and Variation Regularization". URL: http://arxiv.org/abs/1712.06050.

Bibliography III

Gao, Rui and Anton J. Kleywegt (July 16, 2016). "Distributionally Robust Stochastic Optimization with Wasserstein Distance". URL: http://arxiv.org/abs/1604.02199.

Genevay, Aude, Lénaïc Chizat, et al. (Apr. 11, 2019). "Sample Complexity of Sinkhorn Divergences". In: *The 22nd International Conference on Artificial Intelligence and Statistics*. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1574–1583. URL: https://proceedings.mlr.press/v89/genevay19a.html.

- Genevay, Aude, Marco Cuturi, et al. (Dec. 2016). "Stochastic Optimization for Large-scale Optimal Transport". In: NIPS 2016 - Thirtieth Annual Conference on Neural Information Processing System. Ed. by NIPS. Proc. NIPS 2016. Barcelona, Spain. URL: https://hal.archives-ouvertes.fr/hal-01321664.
- Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy (Mar. 20, 2015). "Explaining and Harnessing Adversarial Examples". URL: http://arxiv.org/abs/1412.6572.

Kwon, Yongchan et al. (Nov. 21, 2020). "Principled Learning Method for Wasserstein Distributionally Robust Optimization with Local Perturbations". In: *International Conference on Machine Learning*. International Conference on Machine Learning. PMLR, pp. 5567–5576. URL: https://proceedings.mlr.press/v119/kwon20a.html.

Lee, Jaeho and M. Raginsky (2018). "Minimax Statistical Learning with Wasserstein Distances". In: NeurIPS.

Bibliography IV

- Li, Jiajin, Caihua Chen, and Anthony Man-Cho So (2020). "Fast Epigraphical Projection-based Incremental Algorithms for Wasserstein Distributionally Robust Support Vector Machine". In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 4029–4039. URL: https://proceedings.neurips.cc/paper/2020/hash/2974788b53f73e7950e8aa49f3a306db-Abstract.html.
- Li, Jiajin, Sen Huang, and Anthony Man-Cho So (2019). "A First-Order Algorithmic Framework for Distributionally Robust Logistic Regression". In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc. URL: https:

//proceedings.neurips.cc/paper/2019/hash/169779d3852b32ce8b1a1724dbf5217d-Abstract.html.

- Mohajerin Esfahani, Peyman and Daniel Kuhn (Sept. 1, 2018). "Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations". In: *Math. Program.* 171, pp. 115–166. URL: https://doi.org/10.1007/s10107-017-1172-1.
- Paty, Franccois-Pierre and Marco Cuturi (2020). "Regularized Optimal Transport Is Ground Cost Adversarial". In: ICML.
- Peypouquet, Juan (2015). Convex Optimization in Normed Spaces: Theory, Methods and Examples. SpringerBriefs in Optimization. Springer International Publishing. URL: https://www.springer.com/gp/book/9783319137094.

Bibliography V

Rockafellar, R. Tyrrell and Roger J.-B. Wets (1998). Variational Analysis. Grundlehren Der Mathematischen Wissenschaften. Berlin Heidelberg: Springer-Verlag. URL:

https://www.springer.com/gp/book/9783540627722.

Shafieezadeh Abadeh, Soroosh, Peyman Mohajerin Mohajerin Esfahani, and Daniel Kuhn (2015). "Distributionally Robust Logistic Regression". In: Advances in Neural Information Processing Systems. Vol. 28. Curran Associates, Inc. URL: https:

//proceedings.neurips.cc/paper/2015/hash/cc1aa436277138f61cda703991069eaf-Abstract.html.

Shafieezadeh-Abadeh, Soroosh, Daniel Kuhn, and Peyman Mohajerin Esfahani (2019). "Regularization via Mass Transportation". In: Journal of Machine Learning Research 20, pp. 1–68. URL: http://jmlr.org/papers/v20/17-633.html.

Sinha, Aman, Hongseok Namkoong, and John C. Duchi (2018). "Certifying Some Distributional Robustness with Principled Adversarial Training". In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. URL: https://openreview.net/forum?id=Hk6kPgZA-.

Wang, Jie, Rui Gao, and Yao Xie (Sept. 24, 2021). "Sinkhorn Distributionally Robust Optimization". URL: http://arxiv.org/abs/2109.11926.

Yu, Yaodong et al. (Apr. 27, 2021). "Fast Distributionally Robust Learning with Variance Reduced Min-Max Optimization". URL: http://arxiv.org/abs/2104.13326.

Most methods rely on the dual of the WDRO objective:

$$\sup_{Q\in\mathcal{P}(\Xi):W_2(P,Q)\leq\rho}\mathbb{E}_Q f_\theta = \inf_{\lambda\geq 0} \lambda\rho^2 + \mathbb{E}_{\xi\sim P}\left[\sup_{\zeta\in\Xi} \{f_\theta(\zeta) - \lambda\|\xi - \zeta\|^2\}\right],$$

- With $\|\xi \zeta\|^2 = \|\xi \zeta\| \iff 2 = 1$ works well with structured (convex, Lipschitz) f_{θ} .
 - Logistic regression (Shafieezadeh Abadeh et al., 2015; Li, Huang, et al., 2019; Yu et al., 2021).
 - \triangleright ℓ^1 linear regression and its derivatives (R. Chen and Paschalidis, 2018).
 - SVM (Shafieezadeh-Abadeh et al., 2019; Li, C. Chen, et al., 2020).
- With $\|\xi \zeta\|^2 = \|\xi \zeta\|^2 \iff 2 = 2$: strongly convex, can be combined with the structure of the dual for efficient algorithms (Blanchet, Murthy, and Zhang, 2020; Sinha et al., 2018).

Solving the WDRO problem for unstructured objective

Gao and Kleywegt (2016). Robust approximation of the WDRO, for $P = \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$, is given by,

$$\min_{\theta\in\Theta} \sup\left\{\frac{1}{nm}\sum_{i=1}^n\sum_{j=1}^m f(\theta,\zeta_{i,j}): \frac{1}{nm}\sum_{i=1}^n\sum_{j=1}^m c(\xi_i,\zeta_{i,j})\leq\rho, \ \zeta_{i,j}\in\Xi\right\}.$$

Blanchet, Murthy, and Zhang (2020).

Recall the dual, for 2-Wasserstein,

$$\inf_{ heta \in \Theta, \lambda \geq 0} \lambda
ho + \mathbb{E}_{\xi \sim P} \sup_{\zeta \in \Xi} f(heta, \zeta) - \lambda \|\xi - \zeta\|^2$$
 .

If f_{θ} is convex, they show that $\lambda^* \sim \frac{1}{\sqrt{\rho}}$ so that, for ρ small enough, one can restricts to large λ . Sinha et al. (2018).

Fix the dual multiplier $\boldsymbol{\lambda}$ and consider the penalized problem,

$$\inf_{\theta\in\Theta}\lambda\rho+\mathbb{E}_{\xi\sim P}\sup_{\zeta\in\Xi}f(\theta,\zeta)-\lambda\|\xi-\zeta\|^2\,.$$

Kwon et al. (2020).

Following works that link WDRO and regularization, for *p*-Wasserstein, $\frac{1}{p} + \frac{1}{q} = 1$ and *p* large enough.

$$\sup_{Q \in \mathcal{P}(\Xi): W_{\rho}(P,Q) \leq \rho} \mathbb{E}_{Q} f_{\theta} \underset{\rho \to 0}{\simeq} \mathbb{E}_{P} f_{\theta} + \rho (\mathbb{E}_{P} \| \nabla_{\xi} f_{\theta} \|^{q})^{\frac{1}{q}} ,$$

General duality theorem

Theorem For (i) $\equiv \subset \mathbb{R}^d$ closed, (ii) $c : \equiv^2 \to \mathbb{R} \cup \{+\infty\}$ lsc which is zero on the diagonal, (iii) $f : \equiv \to \mathbb{R}$ usc belonging to $L^1(P)$, $\sup_{Q \in \mathcal{P}(\equiv): W_2(P,Q) \leq \rho} \mathbb{E}_Q f = \inf_{\lambda \geq 0} \lambda \rho + \mathbb{E}_{\xi \sim P} \left[\sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \| \xi - \zeta \|^2 \} \right].$

Sketch of proof Step 1: Lagrangian duality

$$\sup_{Q\in\mathcal{P}(\Xi):W_2(P,Q)\leq\rho} \mathbb{E}_Q f = \sup\{\mathbb{E}_{\pi_2}f:\pi\in\mathcal{P}(\Xi^2),\ \pi_1=P,\ \mathbb{E}_{(\xi,\zeta)\sim\pi}\big[\|\xi-\zeta\|^2\big]\leq\rho\}$$
$$= \inf_{\lambda\geq 0}\lambda\rho + \sup\{\mathbb{E}_{(\xi,\zeta)\sim\pi}f(\zeta)-\lambda\|\xi-\zeta\|^2:\pi\in\mathcal{P}(\Xi^2),\ \pi_1=P\}$$

Step 2: exchange sup and $\mathbb E$ using Rockafellar and Wets (1998, Thm. 14.60),

 $\sup\{\mathbb{E}_{(\xi,\zeta)\sim\pi}f(\zeta) - \lambda \|\xi - \zeta\|^2 : \pi \in \mathcal{P}(\Xi^2), \ \pi_1 = P\} = \sup\{\mathbb{E}_{\xi\sim P}f(\zeta(\xi)) - \lambda c(\xi,\zeta(\xi)) : \zeta : \Xi \to \Xi \text{ meas.}\}$ $= \mathbb{E}_{\xi\sim P}\left[\sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \|\xi - \zeta\|^2\}\right].$

How to solve the Wasserstein distributionally robust optimization (WDRO) problem ?

1. Inspired by Genevay, Cuturi, et al. (2016), solve, when $P = \frac{1}{n} \sum_{i=1}^{n} \delta_{\xi_i}$,

$$\inf_{\substack{\theta \in \Theta \lambda \ge 0, g \in \mathbb{R}^n}} \frac{1}{n} \sum_{i=1}^n g_i + \frac{\varepsilon}{n} \sum_{i=1}^n \mathbb{E}_{\zeta \sim \pi_0(\cdot|\xi_i)} \left[e^{\frac{f_\theta(\zeta) - \lambda_c(\xi_i, \zeta) - g_i}{\varepsilon}} - 1 \right].$$

- \rightarrow But too much variance!
- 2. Instead, use,

$$\inf_{\theta \in \Theta, \lambda \ge 0} \lambda \rho + \varepsilon \mathbb{E}_{\xi \sim P} \log \left(\mathbb{E}_{\zeta \sim \pi_0(\cdot|\xi)} e^{\frac{f_\theta(\zeta) - \lambda \|\xi - \zeta\|^2}{\varepsilon}} \right)$$

(a) Stochastic approximation: compute the gradients with MCMC

$$\mathbb{E}_{\xi \sim P}\left[\frac{\mathbb{E}_{\zeta \sim \pi_{0}(\cdot|\xi)} \nabla_{\theta} f_{\theta}(\zeta) e^{\frac{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|^{2}}{\varepsilon}}}{\mathbb{E}_{\zeta \sim \pi_{0}(\cdot|\xi)} e^{\frac{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|^{2}}{\varepsilon}}}\right], \quad \text{and} \quad \rho - \mathbb{E}_{\xi \sim P}\left[\frac{\mathbb{E}_{\zeta \sim \pi_{0}(\cdot|\xi)} \|\xi - \zeta\|^{2} e^{\frac{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|^{2}}{\varepsilon}}}{\mathbb{E}_{\zeta \sim \pi_{0}(\cdot|\xi)} e^{\frac{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|^{2}}{\varepsilon}}}\right]$$

(b) Biased stochastic minimization:

$$\inf_{\theta \in \Theta, \lambda \ge 0} \lambda \rho + \varepsilon \mathbb{E}_{\xi \sim P} \mathbb{E}_{\zeta_1, \dots, \zeta_m \sim \pi_0(\cdot|\xi)} \log \left(\frac{1}{m} \sum_{i=1}^m e^{\frac{f_0(\zeta_i) - \lambda c(\xi, \zeta_i)}{\varepsilon}} \right)$$

 \rightarrow Bias in $\mathcal{O} * \frac{1}{m}$ with *m* the number of MC samples.

Optimization illustration: ℓ^2 linear regression

$$\Xi = \mathbb{R}^d \times \mathbb{R}, \quad \Theta = \mathbb{R}^d, \quad f_\theta(x, y) = \frac{1}{2} (y - \langle \theta, x \rangle)^2, \quad \|\xi - \zeta\|^2 = \frac{1}{2} \|\xi - \zeta\|^2_2$$

Then, (unregularized) WDRO ℓ^2 linear regression,

Learning illustration: logistic regression

Sketch of proof of approximation result

Crux of the proof:

$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1}=\mathcal{P}, \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1}=\mathcal{P}, \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \{\mathbb{E}_{\pi_{2}}f - \varepsilon \mathcal{K}L(\pi|\pi_{1}) + \varepsilon \mathcal{K}L$$

Sketch of proof of approximation result

Crux of the proof:

$$\sup_{\pi \in \mathcal{P}(\Xi^{2}):\pi_{1}=P,\mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \sup_{\pi \in \mathcal{P}(\Xi^{2}):\pi_{1}=P,\mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{K}L(\pi|\pi_{0}) + \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] + \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] + \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] + \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] + \frac{\varepsilon}{\sigma}$$

For this, at fixed λ , bound

$$\sup_{\pi \in \mathcal{P}(\Xi^2): \pi_1 = P} \left\{ \mathbb{E}_{\pi_2} f - \left(\frac{\varepsilon}{\sigma} + \lambda\right) \mathbb{E}_{(\xi, \zeta) \sim \pi} \left[\|\xi - \zeta\|^2 \right] \right\} - \sup_{\pi \in \mathcal{P}(\Xi^2): \pi_1 = P} \left\{ \mathbb{E}_{\pi_2} f - \frac{\varepsilon}{\varepsilon} \mathcal{KL}(\pi | \pi_0) - \lambda \mathbb{E}_{(\xi, \zeta) \sim \pi} \left[\|\xi - \zeta\|^2 \right] \right\}$$

Sketch of proof of approximation result

Crux of the proof:

$$\sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1}=P, \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \left\{ \mathbb{E}_{\pi_{2}}f - \frac{\varepsilon}{\sigma} \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \right\} - \sup_{\pi \in \mathcal{P}(\Xi^{2}): \pi_{1}=P, \mathbb{E}_{(\xi,\zeta) \sim \pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \{\mathbb{E}_{\pi_{2}}f - \varepsilon \mathcal{K}L(\pi|\pi_{0}) + \varepsilon \mathcal{K}L(\pi|\pi_{$$

For this, at fixed λ , bound

$$\sup_{\pi\in\mathcal{P}(\Xi^2):\pi_1=P} \left\{ \mathbb{E}_{\pi_2}f - \left(\frac{\varepsilon}{\sigma} + \lambda\right) \mathbb{E}_{(\xi,\zeta)\sim\pi} \left[\|\xi - \zeta\|^2 \right] \right\} - \sup_{\pi\in\mathcal{P}(\Xi^2):\pi_1=P} \left\{ \mathbb{E}_{\pi_2}f - \frac{\varepsilon}{\kappa} \mathcal{K}L(\pi|\pi_0) - \lambda \mathbb{E}_{(\xi,\zeta)\sim\pi} \left[\|\xi - \zeta\|^2 \right] \right\}$$

Inspired by Carlier et al. (2017), introduce

$$\pi^{\Delta}(\mathrm{d}\xi,\mathrm{d}\zeta)\propto 1\!\!1_{\zeta\in\overline{\mathbb{B}}(\zeta^{\star}(\xi),\Delta)}\,\pi_{0}(\mathrm{d}\xi,\mathrm{d}\zeta)$$
 ,

where $\zeta^*(\xi) \in \arg \max_{\zeta \in \Xi} \{ f(\zeta) - (\frac{\varepsilon}{\sigma} + \lambda) \| \xi - \zeta \|^{\rho} \}$ and Δ optimized eventually.

Asymptotic regime: $n \to \infty$

To have the optimal rate, we need

$$\underline{\lambda}(
ho)\gtrsim rac{1}{
ho} \quad ext{when }
ho
ightarrow 0$$

Asymptotic regime: $n \to \infty$

To have the optimal rate, we need

$$\underline{\lambda}(\rho) \gtrsim \frac{1}{\rho} \quad \text{ when } \rho \to 0$$

Idea: use the approximation when $\lambda \to +\infty$, $\varepsilon \to 0$,

$$\phi(f,\xi,\lambda,\varepsilon) = \begin{cases} \sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \|\xi - \zeta\|^2\} \approx f(\xi) + \frac{1}{2\lambda} \|\nabla f(\xi)\|_2^2 & \text{if } \varepsilon = 0\\ \log \left(\mathbb{E}_{\zeta \sim \pi_0(\cdot|\xi)} e^{\frac{f(\zeta) - \lambda \|\xi - \zeta\|^2}{\varepsilon}} \right) \approx f(\xi) + \frac{1}{2\left(\lambda + \frac{\varepsilon}{\sigma^2}\right)} \|\nabla f(\xi)\|_2^2 - \frac{\varepsilon d}{2} \log\left(\frac{\lambda}{\varepsilon} + \frac{1}{\sigma^2}\right) & \text{if } \varepsilon > 0 \,. \end{cases}$$

Asymptotic regime: $n \to \infty$

To have the optimal rate, we need

$$\lambda(
ho)\gtrsimrac{1}{
ho} \quad ext{when }
ho
ightarrow 0$$

Idea: use the approximation when $\lambda \to +\infty$, $\varepsilon \to 0$,

$$\phi(f,\xi,\lambda,\varepsilon) = \begin{cases} \sup_{\zeta \in \Xi} \{f(\zeta) - \lambda \|\xi - \zeta\|^2\} \approx f(\xi) + \frac{1}{2\lambda} \|\nabla f(\xi)\|_2^2 & \text{if } \varepsilon = 0\\ \log \left(\mathbb{E}_{\zeta \sim \pi_0(\cdot|\xi)} e^{\frac{f(\zeta) - \lambda \|\xi - \zeta\|^2}{\varepsilon}} \right) \approx f(\xi) + \frac{1}{2\left(\lambda + \frac{\varepsilon}{\sigma^2}\right)} \|\nabla f(\xi)\|_2^2 - \frac{\varepsilon d}{2} \log\left(\frac{\lambda}{\varepsilon} + \frac{1}{\sigma^2}\right) & \text{if } \varepsilon > 0 \,. \end{cases}$$

Lemma When

$$\rho \leq \Omega(1), \quad \rho \geq \mathcal{O}\left(\frac{1}{\sqrt{n}}\right), \text{ and } \varepsilon = 0 \text{ or } \varepsilon \propto \rho,$$

then, with high probability,

$$\forall f \in \mathcal{F}, \quad F_{\rho}^{\varepsilon}(f, \hat{P}_n) = \inf_{\lambda \geq \underline{\lambda}(\rho)} \lambda \rho^2 + \mathbb{E}_{\xi \sim \hat{P}_n}[\phi(f, \xi, \lambda, \varepsilon)],$$

with

$$\underline{\lambda}(\rho) \gtrsim \frac{1}{\rho}$$

Without the concentration and for $\varepsilon = 0$, see Gao, X. Chen, et al. (2020), An and Gao (2021), and Blanchet, Murthy, and Si (2021)...

Adversarial regime: ρ not small, $\varepsilon > 0$

Regularized case
$$\varepsilon > 0$$

When
 $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \le \rho \le \rho_c(f) - \mathcal{O}\left(\frac{1}{\sqrt{n}}\right), \quad \rho_c(f) \ge \mathcal{O}\left(n^{-\frac{1}{6}}\right),$

then, with high probability,

$$\forall f \in \mathcal{F}, \quad F_{\rho}^{\varepsilon}(f, \hat{P}_n) = \inf_{\lambda \geq \underline{\lambda}(\rho)} \lambda \rho^2 + \mathbb{E}_{\xi \sim \hat{P}_n}[\phi(f, \xi, \lambda, \varepsilon)],$$

with

$$\underline{\lambda}(\rho) \gtrsim \varepsilon \left(\frac{\rho_c(f)}{2} - \rho - \mathcal{O}\left(\frac{1}{\sqrt{n}} \right) \right)$$

Adversarial regime: ρ not small, $\varepsilon = 0$

Harder: need to study what happens locally around the maximums of *f*.

Unregularized case ______

$$ho \leq
ho_c(f) - \mathcal{O}\left(n^{-rac{1}{4}}
ight), \quad
ho \geq \mathcal{O}\left(rac{1}{\sqrt{n}}
ight)$$

and,

(i) arg max f are all smooth,

(ii) $f \in \mathcal{F}$ decrease at least uniformly quadratically near their maximums, then, with high probability,

$$orall f \in \mathcal{F}, \quad F^0_
ho(f, \hat{P}_n) = \inf_{\lambda \geq \lambda(
ho)} \lambda
ho^2 + \mathbb{E}_{\xi \sim \hat{P}_n}[\phi(f, \xi, \lambda, 0)],$$

with

$$\underline{\lambda}(
ho) \gtrsim
ho_c^2(f) -
ho^2$$

such that

Adversarial regime: ρ not small, $\varepsilon = 0$

Harder: need to study what happens locally around the maximums of *f*.

. Unregularized case ______ When

$$ho \leq
ho_c(f) - \mathcal{O}\left(n^{-rac{1}{4}}
ight), \quad
ho \geq \mathcal{O}\left(rac{1}{\sqrt{n}}
ight)$$

and,

(i) arg max f are all smooth,

(ii) $f \in \mathcal{F}$ decrease at least uniformly quadratically near their maximums, then, with high probability,

$$\forall f \in \mathcal{F}, \quad F^0_\rho(f, \hat{P}_n) = \inf_{\lambda \ge \lambda(\rho)} \lambda \rho^2 + \mathbb{E}_{\xi \sim \hat{P}_n}[\phi(f, \xi, \lambda, 0)],$$

with

$$\underline{\lambda}(\rho) \gtrsim \rho_c^2(f) - \rho^2$$

such that

Example: $f(\xi) = \ell(\langle \theta, \xi \rangle)$ with $\theta \in \Theta$ compact which does not include 0.

Conclusion

- We studied general regularization for WDRO, taking inspiration from OT.
- Future work:
 - Compare experimentally to other approaches for unstructured problems.
 - Investigate further the computational and statistical properties of the regularized formulation (strong convexity? out-of-sample guarantees?)
 - Design cheaper approaches for unbiased resolution.
 - Handle labels by uniting the two parts of this work.

Fundamental Statistical Guarantees (Mohajerin Esfahani and Kuhn, 2018)

With
$$P = \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 with $\xi_i \sim P_{train}$
 $P = \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$
 $\rho_n \gtrsim n^{-1/d}$

Then, with high probability,

$$W_2(\hat{P}_n, \mathcal{P}_{train}) \leq \rho_n \quad \text{and} \quad \mathbb{E}_{\xi \sim \mathcal{P}_{train}} f_{\theta}(\xi) \leq \sup_{Q \in \mathcal{P}(\Xi) : W_2(\hat{P}_n, Q) \leq \rho_n} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$$

Fundamental Statistical Guarantees (Mohajerin Esfahani and Kuhn, 2018)

With
$$P = \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$$
 with $\xi_i \sim P_{train}$
 $P = \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$
 $\rho_n \gtrsim n^{-1/d}$

Then, with high probability,

$$W_2(\hat{P}_n, \mathcal{P}_{train}) \leq \rho_n$$
 and $\mathbb{E}_{\xi \sim \mathcal{P}_{train}} f_{\theta}(\xi) \leq \sup_{Q \in \mathcal{P}(\Xi) : W_2(\hat{P}_n, Q) \leq \rho_n} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$

 \Rightarrow Instead of "Probably Approximately Correct" bounds, "Probably Correct" upper bounds

General regularized duality

Inspired by Paty and Cuturi (2020), we study general regularization on Ξ compact with convex duality.

_ Proposition ______

- If, (i) $c \in C(\Xi^2)$, $f \in C(\Xi)$ on Ξ compact,
 - (ii) $R: \mathcal{M}(\Xi^2) \to \mathbb{R} \cup \{+\infty\}$ convex proper weakly-* lsc,
 - (iii) the primal is strictly feasible,

then,

$$\begin{split} \sup_{\pi \in \mathcal{P}(\Xi^{2}):\pi_{1}=\mathcal{P}, \mathbb{E}_{(\xi,\zeta)\sim\pi}\left[\|\xi-\zeta\|^{2}\right] \leq \rho} \mathbb{E}_{\pi_{2}}f-R(\pi) &= \inf_{\lambda \geq 0} \inf_{\phi \in \mathcal{C}(\Xi^{2})} \lambda \rho + \mathbb{E}_{\xi\sim \mathcal{P}}\left[\sup_{\zeta \in \Xi} f(\zeta) - \lambda \|\xi-\zeta\|^{2} - \phi(\xi,\zeta)\right] + R_{*}(\phi), \\ \text{where } R^{*} \text{ is the conjugate,} \\ R^{*}: \begin{cases} \mathcal{C}(\Xi^{2}) & \to \mathbb{R} \cup \{+\infty\} \\ \phi & \mapsto \sup_{\pi \in \mathcal{C}(\mathcal{X})} \langle \pi, \phi \rangle - R(\pi). \end{cases} \end{split}$$

Consider $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$ and define

Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need $\rho_n \propto n^{-\frac{1}{d}}$.

for $\rho \geq \rho_n$, $F_{
ho}(f, \hat{P}_n) \geq \mathbb{E}_{P_{train}} f$.

Consider $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$ and define

Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need $\rho_n \propto n^{-\frac{1}{d}}$.

for $ho \geq
ho_n$, $F_
ho(f, \hat{P}_n) \geq \mathbb{E}_{P_{train}} f$.

First "dimension-independant" guarantees by Lee and Raginsky (2018) but non-interpretable or void when $\rho \rightarrow 0$.

Consider $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$ and define

Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need $\rho_n \propto n^{-\frac{1}{d}}$.

for
$$\rho \geq \rho_n$$
, $F_{\rho}(f, \hat{P}_n) \geq \mathbb{E}_{P_{train}} f$.

- First "dimension-independant" guarantees by Lee and Raginsky (2018) but non-interpretable or void when $\rho \rightarrow 0$.
- Asymptotic analysis (Blanchet, Murthy, and Si, 2021): $\rho_n \propto n^{-\frac{1}{2}}$ optimal for generalization when $n \to \infty$.

Consider $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\xi_i}$ with $\xi_i \sim P_{train}$ and define

Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need $\rho_n \propto n^{-\frac{1}{d}}$.

for
$$\rho \geq \rho_n$$
, $F_{\rho}(f, \hat{P}_n) \geq \mathbb{E}_{P_{train}} f$.

- First "dimension-independant" guarantees by Lee and Raginsky (2018) but non-interpretable or void when $\rho \rightarrow 0$.
- Asymptotic analysis (Blanchet, Murthy, and Si, 2021): $\rho_n \propto n^{-\frac{1}{2}}$ optimal for generalization when $n \to \infty$.
- Non-asymptotic bounds with optimal p_n ≥ n^{-1/2} by Shafieezadeh-Abadeh et al. (2019) for linear models, convex Lipschitz loss and unconstrained Ξ.
- ► An and Gao (2021): bounds for general objectives with optimal $\rho = \rho_n \gtrsim n^{-\frac{1}{2}}$ but ρ necessarily vanishing and with error terms.