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Robust ML
We want ML models not to fail when applied in the real-world
Shifts in distribution:

Adversarial attacks: from (Goodfellow et al., 2015)

"Snow Road" by Yuichiro Haga, under CC BY 2.0, creativecommons.org/licenses/by/2.0/?ref=openverse. "Pioneertown Road - California" by ChrisGoldNY, under CC BY-NC 2.0,

creativecommons.org/licenses/by-nc/2.0/?ref=openverse. 3 / 23



Learning framework: from ERM to DRO
I Training data ξ1, . . . , ξn ∼ Ptrain , where Ptrain unknown, belgonging to Ξ ⊂ Rd

e.g., ξi = (xi , yi) where xi input, yi label/target

I Objective fθ : Ξ→ R, parameterized by θ
e.g., logistic regression fθ(ξ) = fθ((x , y)) = log

(
1 + e−y〈θ,x〉)

I Empirical Risk Minimization (ERM)

min
θ

1
n

n∑
i=1

fθ(ξi)

= Eξ∼P̂n
fθ(ξ) with P̂n =

1
n

n∑
i=1

δξi

→ Take into account uncertainty in the training data
I Distributionally Robust Optimization (DRO):

min
θ

sup
Q∈U(P̂n)

Eξ∼Q [fθ(ξ)] where U(P̂n) ambiguity set

4 / 23



Learning framework: from ERM to DRO
I Training data ξ1, . . . , ξn ∼ Ptrain , where Ptrain unknown, belgonging to Ξ ⊂ Rd

e.g., ξi = (xi , yi) where xi input, yi label/target

I Objective fθ : Ξ→ R, parameterized by θ
e.g., logistic regression fθ(ξ) = fθ((x , y)) = log

(
1 + e−y〈θ,x〉)

I Empirical Risk Minimization (ERM)

min
θ

1
n

n∑
i=1

fθ(ξi) = Eξ∼P̂n
fθ(ξ) with P̂n =

1
n

n∑
i=1

δξi

→ Take into account uncertainty in the training data
I Distributionally Robust Optimization (DRO):

min
θ

sup
Q∈U(P̂n)

Eξ∼Q [fθ(ξ)] where U(P̂n) ambiguity set

4 / 23



Learning framework: from ERM to DRO
I Training data ξ1, . . . , ξn ∼ Ptrain , where Ptrain unknown, belgonging to Ξ ⊂ Rd

e.g., ξi = (xi , yi) where xi input, yi label/target

I Objective fθ : Ξ→ R, parameterized by θ
e.g., logistic regression fθ(ξ) = fθ((x , y)) = log

(
1 + e−y〈θ,x〉)

I Empirical Risk Minimization (ERM)

min
θ

1
n

n∑
i=1

fθ(ξi) = Eξ∼P̂n
fθ(ξ) with P̂n =

1
n

n∑
i=1

δξi

→ Take into account uncertainty in the training data
I Distributionally Robust Optimization (DRO):

min
θ

sup
Q∈U(P̂n)

Eξ∼Q [fθ(ξ)] where U(P̂n) ambiguity set

4 / 23



Distributionally Robust Optimization

min
θ

sup
Q∈U(P̂n)

Eξ∼Q [fθ(ξ)]

Choice of ambiguity set U(P̂n)

I U(P̂n) defined by moment constraints (Delage and Ye, 2010).

I Through distance/divergence

U(P̂n) = {Q : dist(Q, P̂n) ≤ ρ}

with e.g., KL, MMD...

I This talk: Wasserstein distance

U(P̂n) = {Q : Wp(Q, P̂n) ≤ ρ}

Popular recently: nice theoretical/practical properties (Mohajerin Esfahani and Kuhn, 2018)
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Wasserstein distributionally robust optimization (WDRO)
p-Wasserstein distance: for P,Q probability distributions on Ξ,

Wp(P,Q) = inf
{
E(ξ,ζ)∼π‖ξ − ζ‖p : π ∈ P(Ξ2), π1 = P, π2 = Q

} 1
p

Transport plan between two probabilities on R:

“Transport a pile of sand onto another one:
π(ξ, ζ) = mass of sand taken from P at ξ to put
at ζ for Q”

By Lambdabadger, CC BY-SA 4.0,

commons.wikimedia.org/w/index.php?curid=64872543
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Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for P,Q probability distributions on Ξ,

Wp(P,Q) = inf
{
E(ξ,ζ)∼π‖ξ − ζ‖p : π ∈ P(Ξ2), π1 = P, π2 = Q

} 1
p

WDRO objective:
sup

Q:Wp(P,Q)≤ρ
Eξ∼Q [fθ(ξ)]

Dual: fundamental both in theory and practice

inf
λ≥0

λρp + Eξ∼P

[
sup
ζ∈Ξ
{fθ(ζ)− λ‖ξ − ζ‖p}

]

→ For structured fθ , dual simplifies (solvable as min-max, recall S. Wright’s talk)
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Illustration: logistic regression and distributional shift

ξ = (x , y) with y ∈ −1,+1

fθ((x , y)) = log
(
1 + e−y〈θ,x〉

)
Training:
X |Y = −1∼ N(µ−, 5)

X |Y = +1∼ N(µ+, 1)

Testing:
X |Y = −1∼ N(µ−, 1)

X |Y = +1∼ N(µ+, 5)

Standard logistic regression
Test accuracy: 81%

WDRO Logistic regression
Test accuracy: 91%

Training data Testing data

Acc. 88%
F1 89%

Logistic Regression

Acc. 91%
F1 91%

WDR0 Logistic Regression
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Regularizing WDRO
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Regularization in optimal transport

inf

Eπc︸︷︷︸
linear

+ R(π)

︸ ︷︷ ︸
strongly convex

: π ∈ P(Ξ2), π1 = P, π2 = Q

 1
p ,

Most popular: entropic regularization

R(π) = εKL(π|P ⊗Q) =

{
ε
∫

log dπ
dP⊗Q dP ⊗Q if π � P ⊗Q

+∞ otherwise

I Can be computed efficiently with the Sinkhorn algorithm
→ Popularized optimal transport in the ML community (Cuturi, 2013)
I Nice theoretical properties :

I Provably approximates the unregularized Wasserstein distance (Genevay, Chizat, et al., 2019)
I Resulting distance is smooth (Feydy et al., 2019)
I Good statistical properties (Genevay, Chizat, et al., 2019)
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Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of θ

sup

 EQ fθ︸︷︷︸
linear function

: Q ∈ P(Ξ) , Wp(P,Q) ≤ ρ︸ ︷︷ ︸
non-smooth constraint

 = inf
λ≥0

λρp + Eξ∼P

 non-smooth︷ ︸︸ ︷
sup
ζ∈Ξ
{fθ(ζ)− λ‖ξ − ζ‖p}

 ,

Reformulation: using the definition of Wp(P,Q)

sup

 Eπ2 fθ︸ ︷︷ ︸
linear function

: π ∈ P(Ξ2), π1 = P , E(ξ,ζ)∼π‖ξ − ζ‖p ≤ ρ︸ ︷︷ ︸
linear constraint
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Regularizing the WDRO objective

Primal:

where R,S : M(Ξ2)→ R ∪ {+∞}

sup

 Eπ2 fθ︸ ︷︷ ︸
linear function

− R(π)

︸ ︷︷ ︸
(strongly) convex

: π ∈ P(Ξ2), π1 = P , E(ξ,ζ)∼π[‖ξ − ζ‖p]︸ ︷︷ ︸
linear function

+ S(π)

︸ ︷︷ ︸
(strongly) convex

≤ ρ



Dual:

inf
λ≥0

inf
φ∈C(Ξ2)

λρ+ Eξ∼P

[
sup
ζ∈Ξ

f (ζ)− λ‖ξ − ζ‖p − φ(ξ, ζ)

]
+ (R + λS)∗(φ) ,

Idea of proof: on Ξ compact to use duality C(Ξ2)∗ = M(Ξ2)

I Lagrangian duality (Peypouquet, 2015)
I Fenchel duality (Bot et al., 2009)
I Exchange sup / E[·] (Rockafellar and Wets, 1998)
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Entropic regularization

Corollary (A., Iutzeler, Malick, 2022)
With S = 0, R = εKL(·|π0) s.t. (π0)1 = P

sup
π∈PP (Ξ2):E(ξ,ζ)∼π [‖ξ−ζ‖p ]≤ρ

Eπ2 f − εKL(π|π0) = inf
λ≥0

λρp + εEξ∼P log

(
Eζ∼π0(·|ξ)e

f (ζ)−λ‖ξ−ζ‖p
ε

)

To compare with:

sup
Q∈P(Ξ):Wp(P,Q)≤ρ

EQ f = inf
λ≥0

λρp + Eξ∼P

[
sup
ζ∈Ξ
{f (ζ)− λ‖ξ − ζ‖p}

]

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)
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Choice of regularization measure

OT: when P,Q fixed, entropic regularization w.r.t. π0 = P ⊗Q since

π1 = P and π2 = Q =⇒ π � P ⊗Q

WDRO: π2 not fixed! Choose, with (π0)1 = P ,

π0(dξ, dζ) ∝ P(dξ)1ζ∈Ξ e−
‖ξ−ζ‖p
σ dζ

π0(dζ|ξ) ∝ 1ζ∈Ξ e−
‖ξ−ζ‖p
σ dζ

⇒ Enforces π � Lebesgue
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Approximation bound
Inspired by Genevay, Chizat, et al. (2019) for OT, bound the approximation error between:

sup
π∈P(Ξ2):π1=P,E(ξ,ζ)∼π [‖ξ−ζ‖p ]≤ρ

{Eπ2 f } (WDRO)

sup
π∈P(Ξ2):π1=P,E(ξ,ζ)∼π [‖ξ−ζ‖p ]≤ρ

{Eπ2 f − εKL(π|π0)} (ε-WDRO)

Proposition (A., Iutzeler, Malick, 2022)
Under regularity assumptions on f and Ξ ⊂ Rd compact, with, π0(dξ, dζ) ∝ P(dξ)1ζ∈Ξ e−

‖ξ−ζ‖p
σ dζ

then,
0 ≤ val(WDRO)− val(ε-WDRO) ≤ O

(
εd log

1
ε

)

Conclusion of the first part: regularize the WDRO objective
I Smooth and still tractable dual
I Provably close to original
I Interesting in practice (to be done)
I Interesting in theory (now in the second part!)
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“Robust” generalization properties of WDRO
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Statistical properties of WDRO
With P̂n = 1

n

∑n
i=1δξi where ξi ∼ Ptrain i.i.d. in Ξ ⊂ Rd

I Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if ρ ≥ O
(
n−

1
d

)
, with high probability,

sup
Q:Wp(P̂n ,Q)≤ρ

Eξ∼Q [f (ξ)]︸ ︷︷ ︸
can compute and optimize!

≥ Eξ∼Ptrain f (ξ)︸ ︷︷ ︸
cannot access

I Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability

Wp(P̂n,Ptrain) ≤ O
(
n−

1
d

)
→ But exponential dependance in d ...

I To do better: treat the WDRO objective as a whole
e.g., (An and Gao, 2021) : guarantees with ρ ∝ n−

1
2

I But we can do even better, especially with regularization!
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What we would like
Define,

F ε
ρ (f ,P) = sup

π∈P(Ξ2):π1=P,E(ξ,ζ)∼π [‖ξ−ζ‖p ]≤ρ
{Eπ2 f − εKL(π|π0)}

and recall P̂n = 1
n

∑n
i=1δξi where ξi ∼ Ptrain

Ideal result
With high probability, for all f ∈ F ,

F ε
ρ (f , P̂n) ≥ F ε

ρ−ρn (f ,Ptrain)

with ρn = O
(
n−

1
2

)
, ε ≥ 0

I Optimal requirement on radius when n →∞ (Blanchet, Murthy, and Si, 2021)
I Guarantee on the WDRO objective and ρ can be non-vanishing

Our result
I Ξ compact and p = 2
I ε > 0 (at least today)
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Nice consequences of ideal result, e.g. case ε = 0

P̂n = 1
n

∑n
i=1δξi with ξi ∼ Ptrain

1. Generalization bound:

with high probability, Fρ(f , P̂n) ≥ Fρ−ρn (f ,Ptrain) ≥ EPtrain f

2. Distribution shift: Ptrain 6= Ptest i.e. W2(Ptrain,Ptest) > 0

with high probability, Fρ(f , P̂n) ≥ Fρ−ρn (f ,Ptrain)

≥ EPtest f

when ρ− ρn ≥W2(Ptrain,Ptest)
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Can we have this ideal result?

Yes!

Existing works:
I In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
I With error terms and obligatory vanishing ρ (An and Gao, 2021)

Our work: version of the ideal result (A., Iutzeler, Malick, 2022)
I Ξ compact and p = 2
I ε > 0 (at least today)
I + assumptions about F , etc...

Idea of proof:
1. Why we need to lower bound λ
2. How we lower bound λ
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Idea of proof 1: Why we need to lower bound λ
Recall, for ε > 0,

F ε
ρ (f ,P) = sup

π∈P(Ξ2):π1=P,E(ξ,ζ)∼π[‖ξ−ζ‖2]≤ρ
{Eπ2 f − εKL(π|π0)}

= inf
λ≥0

λρ2 + Eξ∼P̂n

[
log

(
Eζ∼π0(·|ξ)

[
e

f (ζ)−λ‖ξ−ζ‖2
ε

])]
Lemma
For ρ > 0, ε > 0 assume that there is some λ(ρ) > 0 such that, with high probability,

∀f ∈ F , F ε
ρ (f , P̂n) = inf

λ≥λ(ρ)
λρ2 + Eξ∼P̂n

[
log

(
Eζ∼π0(·|ξ)

[
e

f (ζ)−λ‖ξ−ζ‖2
ε

])]
then we get the ideal result: with high probability, for all f ∈ F ,

F ε
ρ (f , P̂n) ≥ F ε

ρ−ρn (f ,Ptrain)

with
ρn = O

(
1

λ(ρ)ρ
√

n

)
⇒ Need a lower bound λ(ρ) on the optimal dual multiplier for P̂n
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Idea of proof 2: How we lower bound λ

∝ 1
ρ

∝ ρc − ρ

ρc

ρ

λ
(ρ

)

General lower bound
Lower bound when ρ→ 0

Recall: λ dual multiplier for

W2(P̂n,Q) ≤ ρ

When ρ large enough, the constraint
becomes inactive and λ = 0
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Ideal theorem

Theorem (informal) (A., Iutzeler, Malick, 2022)
For ε ∝ ρ, with

ρn = O
(

1√
n

)
,

if
ρn ≤ ρ ≤

ρc

2
−O

(
n−

1
2

)
, ρc ≥ O

(
n−

1
6

)
then, with high probability,

∀f ∈ F , F ε
ρ (f , P̂n) ≥ F ε

ρ−ρn (f ,Ptrain)

Remark: extends to unregularized (ε = 0) with stronger assumptions on F
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Conclusion

Main takeaways:
I Present regularization for WDRO: smooth dual and still provably close to the original
I New generalization bounds for WDRO, especially for regularized WDRO

Future work:
I Wrap up the paper ,
I Generalize the current generalization bounds (non-compact, p 6= 2, other regularizations...)
I Efficient and scalable computational methods

Azizian, Iutzeler, Malick (2022). “Regularization for Wasserstein Distributionally Robust Optimization”.
arXiv:2205.08826, submitted.
Azizian, Iutzeler, Malick (2022). “Robust Generalization Bounds for Wasserstein Distributionally Robust
Optimization”. to be submitted.
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WDRO can be tractable

Most methods rely on the dual of the WDRO objective:

sup
Q∈P(Ξ):W2(P,Q)≤ρ

EQ fθ = inf
λ≥0

λρ2 + Eξ∼P

[
sup
ζ∈Ξ
{fθ(ζ)− λ‖ξ − ζ‖2}

]
,

I With ‖ξ − ζ‖2 = ‖ξ − ζ‖ ⇐⇒ 2 = 1 works well with structured (convex, Lipschitz) fθ .
I Logistic regression (Shafieezadeh Abadeh et al., 2015; Li, Huang, et al., 2019; Yu et al., 2021).
I `1 linear regression and its derivatives (R. Chen and Paschalidis, 2018).
I SVM (Shafieezadeh-Abadeh et al., 2019; Li, C. Chen, et al., 2020).

I With ‖ξ − ζ‖2 = ‖ξ − ζ‖2 ⇐⇒ 2 = 2: strongly convex, can be combined with the structure of
the dual for efficient algorithms (Blanchet, Murthy, and Zhang, 2020; Sinha et al., 2018).
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Solving the WDRO problem for unstructured objective
Gao and Kleywegt (2016).
Robust approximation of the WDRO,for P = P̂n = 1

n

∑n
i=1δξi , is given by,

min
θ∈Θ

sup

{
1

nm

n∑
i=1

m∑
j=1

f (θ, ζi ,j) :
1

nm

n∑
i=1

m∑
j=1

c(ξi , ζi ,j) ≤ ρ, ζi ,j ∈ Ξ

}
.

Blanchet, Murthy, and Zhang (2020).
Recall the dual, for 2-Wasserstein,

inf
θ∈Θ,λ≥0

λρ+ Eξ∼P sup
ζ∈Ξ

f (θ, ζ)− λ‖ξ − ζ‖2 .

If fθ is convex, they show that λ? ∼ 1√
ρ
so that, for ρ small enough, one can restricts to large λ.

Sinha et al. (2018).
Fix the dual multiplier λ and consider the penalized problem,

inf
θ∈Θ

λρ+ Eξ∼P sup
ζ∈Ξ

f (θ, ζ)− λ‖ξ − ζ‖2 .

Kwon et al. (2020).
Following works that link WDRO and regularization, for p-Wasserstein, 1

p + 1
q = 1 and p large enough.

sup
Q∈P(Ξ):Wp(P,Q)≤ρ

EQ fθ '
ρ→0
EP fθ + ρ(EP‖∇ξ fθ‖q)

1
q ,
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General duality theorem

Theorem
For (i) Ξ ⊂ Rd closed,

(ii) c : Ξ2 → R∪{+∞} lsc which is zero on the diagonal,
(iii) f : Ξ→ R usc belonging to L1(P),

sup
Q∈P(Ξ):W2(P,Q)≤ρ

EQ f = inf
λ≥0

λρ+ Eξ∼P

[
sup
ζ∈Ξ
{f (ζ)− λ‖ξ − ζ‖2}

]
.

Sketch of proof
Step 1: Lagrangian duality

sup
Q∈P(Ξ):W2(P,Q)≤ρ

EQ f = sup{Eπ2 f : π ∈ P(Ξ2), π1 = P, E(ξ,ζ)∼π
[
‖ξ − ζ‖2

]
≤ ρ}

= inf
λ≥0

λρ+ sup{E(ξ,ζ)∼πf (ζ)− λ‖ξ − ζ‖2 : π ∈ P(Ξ2), π1 = P}

Step 2: exchange sup and E using Rockafellar and Wets (1998, Thm. 14.60),
sup{E(ξ,ζ)∼πf (ζ)− λ‖ξ − ζ‖2 : π ∈ P(Ξ2), π1 = P} = sup {Eξ∼P f (ζ(ξ))− λc(ξ, ζ(ξ)) : ζ : Ξ→ Ξ meas.}

= Eξ∼P

[
sup
ζ∈Ξ

{
f (ζ)− λ‖ξ − ζ‖2

}]
.
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How to solve the Wasserstein distributionally robust optimization (WDRO) problem ?
1. Inspired by Genevay, Cuturi, et al. (2016), solve, when P = 1

n

∑n
i=1δξi ,

inf
θ∈Θλ≥0,g∈Rn

1
n

n∑
i=1

gi +
ε

n

n∑
i=1

Eζ∼π0(·|ξi )

[
e

fθ (ζ)−λc(ξi ,ζ)−gi
ε − 1

]
.

→ But too much variance!
2. Instead, use,

inf
θ∈Θ,λ≥0

λρ+ εEξ∼P log

(
Eζ∼π0(·|ξ)e

fθ (ζ)−λ‖ξ−ζ‖2
ε

)
.

(a) Stochastic approximation: compute the gradients with MCMC

Eξ∼P

Eζ∼π0(·|ξ)∇θ fθ(ζ)e
fθ (ζ)−λ‖ξ−ζ‖2

ε

Eζ∼π0(·|ξ)e
fθ (ζ)−λ‖ξ−ζ‖2

ε

 , and ρ− Eξ∼P

Eζ∼π0(·|ξ)‖ξ − ζ‖2e
fθ (ζ)−λ‖ξ−ζ‖2

ε

Eζ∼π0(·|ξ)e
fθ (ζ)−λ‖ξ−ζ‖2

ε

 .
(b) Biased stochastic minimization:

inf
θ∈Θ,λ≥0

λρ+ εEξ∼PEζ1,...,ζm∼π0(·|ξ) log

(
1
m

m∑
i=1

e
fθ (ζi )−λc(ξ,ζi )

ε

)
.

→ Bias in O ∗ 1
m with m the number of MC samples.
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Optimization illustration: `2 linear regression

Ξ = Rd × R , Θ = Rd , fθ(x , y) =
1
2

(y − 〈θ, x〉)2 , ‖ξ − ζ‖2 =
1
2
‖ξ − ζ‖22 .

Then, (unregularized) WDRO `2 linear regression,

inf
θ∈Θ

sup
Q∈P(Ξ):W2(P,Q)≤ρ

EQ fθ = inf
θ∈Θ

1
2

(√
2ρ(1 + ‖θ‖22) +

√
E(X ,Y )∼P [(Y − 〈X , θ〉)2]

)2

︸ ︷︷ ︸
=Fρ(θ)

.
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Iterations
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ρ
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0 20 40 60 80 100 120 140

10−4

10−3

10−2

10−1

Iterations

‖θ
t
−
θ
∗ ‖

Unregularized WDRO
Regularized SA WDRO
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n = 1000, d = 20, ρ = 0.1, ε = 0.01 and σ = 0.1. 10 / 19



Learning illustration: logistic regression
Training data Testing data

Acc. 89%
F1 90%
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Sketch of proof of approximation result

I Crux of the proof:

sup
π∈P(Ξ2):π1=P,E(ξ,ζ)∼π[‖ξ−ζ‖2]≤ρ

{
Eπ2 f −

ε

σ
E(ξ,ζ)∼π

[
‖ξ − ζ‖2

]}
− sup
π∈P(Ξ2):π1=P,E(ξ,ζ)∼π[‖ξ−ζ‖2]≤ρ

{Eπ2 f − εKL(π|π0)} ≤ O
(
εd log

1
ε

)
.

I For this, at fixed λ, bound

sup
π∈P(Ξ2):π1=P

{
Eπ2 f −

( ε
σ

+ λ
)
E(ξ,ζ)∼π

[
‖ξ − ζ‖2

]}
− sup
π∈P(Ξ2):π1=P

{
Eπ2 f − εKL(π|π0)− λE(ξ,ζ)∼π

[
‖ξ − ζ‖2

]}
.

I Inspired by Carlier et al. (2017), introduce

π∆(dξ, dζ) ∝ 1ζ∈B(ζ?(ξ),∆) π0(dξ, dζ) ,

where ζ?(ξ) ∈ arg maxζ∈Ξ

{
f (ζ)−

(
ε
σ

+ λ
)
‖ξ − ζ‖p

}
and ∆ optimized eventually.
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Asymptotic regime: n →∞
To have the optimal rate, we need

λ(ρ) &
1
ρ

when ρ→ 0

Idea: use the approximation when λ→ +∞, ε→ 0,

φ(f , ξ, λ, ε) =

supζ∈Ξ{f (ζ)− λ‖ξ − ζ‖2} ≈ f (ξ) + 1
2λ‖∇ f (ξ)‖22 if ε = 0

log

(
Eζ∼π0(·|ξ)e

f (ζ)−λ‖ξ−ζ‖2
ε

)
≈ f (ξ) + 1

2
(
λ+ ε

σ2

)‖∇ f (ξ)‖22 −
εd
2 log

(
λ
ε

+ 1
σ2

)
if ε > 0 .

Lemma
When

ρ ≤ Ω(1) , ρ ≥ O
(

1√
n

)
, and ε = 0 or ε ∝ ρ ,

then, with high probability,

∀f ∈ F , F ε
ρ (f , P̂n) = inf

λ≥λ(ρ)
λρ2 + Eξ∼P̂n

[φ(f , ξ, λ, ε)] ,

with
λ(ρ) &

1
ρ
.

Without the concentration and for ε = 0, see Gao, X. Chen, et al. (2020), An and Gao (2021), and Blanchet, Murthy, and Si (2021)...
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Adversarial regime: ρ not small, ε > 0

Regularized case ε > 0
When

O
(

1√
n

)
≤ ρ ≤ ρc(f )−O

(
1√
n

)
, ρc(f ) ≥ O

(
n−

1
6

)
,

then, with high probability,

∀f ∈ F , F ε
ρ (f , P̂n) = inf

λ≥λ(ρ)
λρ2 + Eξ∼P̂n

[φ(f , ξ, λ, ε)] ,

with
λ(ρ) & ε

(
ρc(f )

2
− ρ−O

(
1√
n

))
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Adversarial regime: ρ not small, ε = 0

Harder: need to study what happens locally around the maximums of f .

Unregularized case
When

ρ ≤ ρc(f )−O
(
n−

1
4

)
, ρ ≥ O

(
1√
n

)
and,
(i) arg max f are all smooth,
(ii) f ∈ F decrease at least uniformly quadratically near their maximums,
then, with high probability,

∀f ∈ F , F 0
ρ (f , P̂n) = inf

λ≥λ(ρ)
λρ2 + Eξ∼P̂n

[φ(f , ξ, λ, 0)] ,

with
λ(ρ) & ρ2

c(f )− ρ2

such that

Example: f (ξ) = `(〈θ, ξ〉) with θ ∈ Θ compact which does not include 0.
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Conclusion

I We studied general regularization for WDRO, taking inspiration from OT.
I Future work:

I Compare experimentally to other approaches for unstrctured problems.
I Investigate further the computational and statistical properties of the regularized formulation (strong

convexity? out-of-sample guarantees?)
I Design cheaper approaches for unbiased resolution.
I Handle labels by uniting the two parts of this work.
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Fundamental Statistical Guarantees (Mohajerin Esfahani and Kuhn, 2018)

With P = P̂n = 1
n

∑n
i=1δξi with ξi ∼ Ptrain

I P = P̂n = 1
n

∑n
i=1δξi with ξi ∼ Ptrain

I ρn & n−1/d

Then, with high probability,

W2(P̂n,Ptrain) ≤ ρn and Eξ∼Ptrain fθ(ξ) ≤ sup
Q∈P(Ξ):W2(P̂n ,Q)≤ρn

Eξ∼Q [fθ(ξ)]

⇒ Instead of “Probably Approximately Correct” bounds, “Probably Correct” upper bounds
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General regularized duality
Inspired by Paty and Cuturi (2020), we study general regularization on Ξ compact with convex duality.

Proposition
If, (i) c ∈ C(Ξ2), f ∈ C(Ξ) on Ξ compact,

(ii) R : M(Ξ2)→ R ∪ {+∞} convex proper weakly-? lsc,
(iii) the primal is strictly feasible,

then,
sup

π∈P(Ξ2):π1=P,E(ξ,ζ)∼π[‖ξ−ζ‖2]≤ρ
Eπ2 f−R(π) = inf

λ≥0
inf

φ∈C(Ξ2)
λρ+Eξ∼P

[
sup
ζ∈Ξ

f (ζ)− λ‖ξ − ζ‖2 − φ(ξ, ζ)

]
+R∗(φ) ,

where R∗ is the conjugate,

R∗ :

{
C(Ξ2) → R ∪ {+∞}
φ 7→ supπ∈C(X )〈π, φ〉 − R(π) .
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Existing work

Consider P̂n = 1
n

∑n
i=1δξi with ξi ∼ Ptrain and define

I Seminal guarantee of Mohajerin Esfahani and Kuhn (2018) but need ρn ∝ n−
1
d .

for ρ ≥ ρn , Fρ(f , P̂n) ≥ EPtrain f .

I First “dimension-independant” guarantees by Lee and Raginsky (2018) but non-interpretable or
void when ρ→ 0.

I Asymptotic analysis (Blanchet, Murthy, and Si, 2021): ρn ∝ n−
1
2 optimal for generalization when

n →∞.
I Non-asymptotic bounds with optimal ρn & n−

1
2 by Shafieezadeh-Abadeh et al. (2019) for linear

models, convex Lipschitz loss and unconstrained Ξ.
I An and Gao (2021): bounds for general objectives with optimal ρ = ρn & n−

1
2 but ρ necessarily

vanishing and with error terms.
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