Exact Generalization Guarantees For (Regularized) Wasserstein Distributionally Robust Models

Waïss Azizian, Franck lutzeler, Jérôme Malick

NeurIPS In Paris 2023

Standard and robust models in ML

- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ on a sample $\xi = (x, y)$
- \triangleright \hat{P}_n empirical distribution coming from true distribution P

Empirical risk minimization

minimize $\mathbb{E}_{\xi \sim \hat{P}_n}[f_{\theta}(\xi)]$ empirical risk

Generalization guarantees:

relate $\mathbb{E}_{\xi \sim \hat{P}_n}[f_{\theta}(\xi)]$ empirical risk to $\mathbb{E}_{\xi \sim P}[f_{\theta}(\xi)]$ true risk

ightarrow Only approximate, ERM can lead to overconfident decisions, sensitive to distribution shifts

Standard and robust models in ML

- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ on a sample $\xi = (x, y)$
- \hat{P}_n empirical distribution coming from true distribution P

Empirical risk minimization

minimize $\mathbb{E}_{\xi \sim \hat{P}_n}[f_{\theta}(\xi)]$ empirical risk

Generalization guarantees:

relate $\mathbb{E}_{\xi \sim \hat{P}_{\theta}}[f_{\theta}(\xi)]$ empirical risk to $\mathbb{E}_{\xi \sim P}[f_{\theta}(\xi)]$ true risk

ightarrow Only approximate, ERM can lead to overconfident decisions, sensitive to distribution shifts

Wasserstein distributionally robust optimization

minimize $\sup_{Q:W_2(\hat{P}_n,Q) \le \rho} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$ empirical robust risk

where the sup is over the Wasserstein ball of radius ρ around \hat{P}_n

Main Contribution: Exact Generalization for WDRO

Our Theorem (Informal) Under compactness and smoothness assumptions, for $\delta \in (0, 1)$, for ρ small enough and for any n, if $\rho \geq O\left(\sqrt{\frac{\log 1/\delta}{n}}\right)$ Generalization guarantee: w.p. $1 - \delta$, for all $\theta \in \Theta$, empirical robust risk $\sup_{Q:W_2(\hat{P}_n,Q) \leq \rho} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)] \geq \mathbb{E}_{\xi \sim P}[f_{\theta}(\xi)]$ true risk

- Covers many examples: logistic regression, smooth kernels, smooth neural networks,...
- No curse of dimensionality for ρ
- Improves upon existing works [Esfahani and Kuhn, 2018; An and Gao, 2021; Blanchet et al., 2021;...]
- Extensions: distributions shifts, not overly pessimistic, entropic regularization...