Exact Generalization Guarantees
 For (Regularized) Wasserstein Distributionally Robust Models

Waïss Azizian, Franck lutzeler, Jérôme Malick

NeurIPS In Paris 2023
Université
Université Grenoble Alpes

Standard and robust models in ML

- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ on a sample $\xi=(x, y)$
- \hat{P}_{n} empirical distribution coming from true distribution P

Empirical risk minimization

$$
\text { minimize } \quad \mathbb{E}_{\xi \sim \hat{\rho}_{n}}\left[f_{\theta}(\xi)\right] \quad \text { empirical risk }
$$

Generalization guarantees:

$$
\text { relate } \quad \mathbb{E}_{\xi \sim \hat{p}_{n}}\left[f_{\theta}(\xi)\right] \quad \text { empirical risk } \quad \text { to } \quad \mathbb{E}_{\xi \sim \sim}\left[f_{\theta}(\xi)\right] \quad \text { true risk }
$$

\rightarrow Only approximate, ERM can lead to overconfident decisions, sensitive to distribution shifts

Standard and robust models in ML

- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ on a sample $\xi=(x, y)$
- \hat{P}_{n} empirical distribution coming from true distribution P

Empirical risk minimization

$$
\text { minimize } \quad \mathbb{E}_{\xi \sim \hat{\rho}_{n}}\left[f_{\theta}(\xi)\right] \quad \text { empirical risk }
$$

Generalization guarantees:

$$
\text { relate } \mathbb{E}_{\xi \sim \hat{p}_{n}}\left[f_{\theta}(\xi)\right] \quad \text { empirical risk } \quad \text { to } \quad \mathbb{E}_{\xi \sim \sim}\left[f_{\theta}(\xi)\right] \quad \text { true risk }
$$

\rightarrow Only approximate, ERM can lead to overconfident decisions, sensitive to distribution shifts
Wasserstein distributionally robust optimization

$$
\text { minimize } \sup _{Q: W_{2}\left(P_{n}, Q\right) \leq \rho} \mathbb{E}_{\xi \sim Q}\left[f_{\theta}(\xi)\right] \quad \text { empirical robust risk }
$$

where the sup is over the Wasserstein ball of radius ρ around \hat{P}_{n}

Main Contribution: Exact Generalization for WDRO

Our Theorem (Informal)
Under compactness and smoothness assumptions, for $\delta \in(0,1)$, for ρ small enough and for any n, if

$$
\rho \geq \mathcal{O}\left(\sqrt{\frac{\log 1 / \delta}{n}}\right)
$$

Generalization guarantee: w.p. $1-\delta$, for all $\theta \in \Theta$,

$$
\text { empirical robust risk } \sup _{Q: W_{2}\left(\hat{P}_{n}, Q\right) \leq \rho} \mathbb{E}_{\xi \sim Q}\left[f_{\theta}(\xi)\right] \geq \mathbb{E}_{\xi \sim P}\left[f_{\theta}(\xi)\right] \quad \text { true risk }
$$

- Covers many examples: logistic regression, smooth kernels, smooth neural networks,...
- No curse of dimensionality for ρ
- Improves upon existing works [Esfahani and Kuhn, 2018; An and Gao, 2021; Blanchet et al., 2021;...]
- Extensions: distributions shifts, not overly pessimistic, entropic regularization...

