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Introduction

Basic task of Statistical Learning: learn from a finite number of samples from a true distribution

Goal of generalization guarantees:

relate  risk w.rt. samples  to  truerisk

_ Our Theorem (Informal)

With high probability,
robust risk w.r.t. samples > true risk

» For general classes of models
» Not overly pessimistic
» No curse of dimensionality
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Notations: standard and robust models in ML

» f3(€) the loss induced by a model parametrized by 6
» £ uncertain variable (e.g., data point £ = (x, y))
> empirical distribution with samples of the true distribution P

mip Ee 166 = 5 30 6()

— Over-confident decisions and sensitive to distribution shifts

Wasserstein distributionally robust optimization (WDRO)

min sup E¢o[fo(£)]
90 Quma(Pr.@)<p

where W, is the optimal transport cost between Q and Q’
» Robust version of ERM against distributions Q satisfying W>(7,,, Q) < p
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Exact Generalization for WDRO

» Robust risk:

Rpe(fo) = sup. Eevo[fa(£)]
QEP(Z):Wa(Fr.Q)<p

» Direct generalization guarantees (Esfahani and Kuhn, 2018):

ifWa(P, P)<p then  R.(f) > Eeplfi(é)]
~~—— ~—

can compute from Py, cannot access

» Limitations:

1/d

— It requires p o< 1/n'/? where d is the dimension of £ (Fournier and Guillin, 2015)

— Not optimal: p < 1/+/n suffices asymptotically (Blanchet et al., 2022), in particular cases
(Shafieezadeh-Abadeh et al., 2019) or with error terms (Gao, 2022).
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Main Contribution: Exact Generalization for WDRO

Setting
» O, = compact, f; smooth
» Covers many examples: logistic regression, smooth kernels, smooth neural networks,...

~ Theorem

For é € (0, 1), for p small enough and for any n, if

p20< /Iognl/é)

Generalization guarantee: w.p. 1 — 9, forall 6 € ©,

> Eeop [fo(€)]
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More in the paper

See the paper and come to the (virtual) poster for details, refinements and extensions :-)

Our results also:
» Allow for bigger p
» Capture distribution shifts
» Provide an upper-bound on the robust risk

» Extend to entropy-regularized formulation
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