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Introduction

Basic task of Statistical Learning: learn from a finite number of samples from a true distribution

Goal of generalization guarantees:

relate risk w.r.t. samples to true risk

Our Theorem (Informal)
With high probability,

robust risk w.r.t. samples ≥ true risk

I For general classes of models
I Not overly pessimistic
I No curse of dimensionality
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Notations: standard and robust models in ML

I fθ(ξ) the loss induced by a model parametrized by θ
I ξ uncertain variable (e.g., data point ξ = (x , y))
I P̂n empirical distribution with samples ξ1, . . . , ξn of the true distribution P

min
θ∈Θ

Eξ∼P̂n
[fθ(ξ)] =

1
n

n∑
i=1

fθ(ξi)

→ Over-confident decisions and sensitive to distribution shifts

Wasserstein distributionally robust optimization (WDRO)

min
θ∈Θ

sup
Q:W2(P̂n ,Q)≤ρ

Eξ∼Q [fθ(ξ)]

where W2 is the optimal transport cost between Q and Q ′

I Robust version of ERM against distributions Q satisfying W2(P̂n,Q) ≤ ρ
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Exact Generalization for WDRO

I Robust risk:
R̂ρ2 (fθ) = sup

Q∈P(Ξ):W2(P̂n ,Q)≤ρ
Eξ∼Q [fθ(ξ)] .

I Direct generalization guarantees (Esfahani and Kuhn, 2018):

if W2(P̂n,P) ≤ ρ then R̂ρ2 (fθ)︸ ︷︷ ︸
can compute from P̂n

≥ Eξ∼P [fθ(ξ)]︸ ︷︷ ︸
cannot access

I Limitations:

→ It requires ρ ∝ 1/n1/d where d is the dimension of ξ (Fournier and Guillin, 2015)

→ Not optimal: ρ ∝ 1/
√

n suffices asymptotically (Blanchet et al., 2022), in particular cases
(Shafieezadeh-Abadeh et al., 2019) or with error terms (Gao, 2022).
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Main Contribution: Exact Generalization for WDRO

Setting
I Θ, Ξ compact, fθ smooth
I Covers many examples: logistic regression, smooth kernels, smooth neural networks,...

Theorem
For δ ∈ (0, 1), for ρ small enough and for any n, if

ρ ≥ O

(√
log 1/δ

n

)
Generalization guarantee: w.p. 1− δ, for all θ ∈ Θ,

R̂ρ2 (fθ) ≥ Eξ∼P [fθ(ξ)]
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More in the paper

See the paper and come to the (virtual) poster for details, refinements and extensions :-)

Our results also:
I Allow for bigger ρ
I Capture distribution shifts
I Provide an upper-bound on the robust risk
I Extend to entropy-regularized formulation
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