Exact Generalization Guarantees For (Regularized) Wasserstein Distributionally Robust Models

Waïss Azizian, Franck lutzeler, Jérôme Malick

NeurIPS 2023

Introduction

Basic task of Statistical Learning: learn from a finite number of samples from a true distribution Goal of generalization guarantees:

relate risk w.r.t. samples to true risk

```
_ Our Theorem (Informal) _____
```

With high probability,

robust risk w.r.t. samples \geq true risk

- For general classes of models
- ► Not overly pessimistic
- No curse of dimensionality

Notations: standard and robust models in ML

- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ
- ξ uncertain variable (e.g., data point $\xi = (x, y)$)
- \hat{P}_n empirical distribution with samples ξ_1, \ldots, ξ_n of the true distribution P

$$\min_{\theta \in \Theta} \mathbb{E}_{\xi \sim \hat{P}_n}[f_{\theta}(\xi)] = \frac{1}{n} \sum_{i=1}^n f_{\theta}(\xi_i)$$

 $\rightarrow~$ Over-confident decisions and sensitive to distribution shifts

Wasserstein distributionally robust optimization (WDRO)

$$\min_{\theta \in \Theta} \sup_{Q: W_2(\hat{P}_n, Q) \le \rho} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$$

where W_2 is the optimal transport cost between Q and Q'

▶ Robust version of ERM against distributions Q satisfying $W_2(\hat{P}_n, Q) \leq \rho$

Exact Generalization for WDRO

Robust risk:

$$\widehat{\mathcal{R}}_{\rho^2}(f_{\theta}) = \sup_{Q \in \mathcal{P}(\Xi) : W_2(\hat{\mathcal{P}}_n, Q) \leq \rho} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)].$$

Direct generalization guarantees (Esfahani and Kuhn, 2018):

if
$$W_2(\hat{P}_n, P) \leq \rho$$
 then $\underbrace{\widehat{\mathcal{R}}_{\rho^2}(f_{\theta})}_{\text{can compute from } \hat{P}_n} \geq \underbrace{\mathbb{E}_{\xi \sim P}[f_{\theta}(\xi)]}_{\text{cannot access}}$

Limitations:

- \rightarrow It requires $\rho \propto 1/n^{1/d}$ where d is the dimension of ξ (Fournier and Guillin, 2015)
- → Not optimal: $\rho \propto 1/\sqrt{n}$ suffices asymptotically (Blanchet et al., 2022), in particular cases (Shafieezadeh-Abadeh et al., 2019) or with error terms (Gao, 2022).

Main Contribution: Exact Generalization for WDRO

Setting

- Θ , Ξ compact, f_{θ} smooth
- Covers many examples: logistic regression, smooth kernels, smooth neural networks,...

- Theorem

For $\delta \in (0, 1)$, for ρ small enough and for any *n*, if

$$\rho \geq \mathcal{O}\left(\sqrt{\frac{\log 1/\delta}{n}}\right)$$

Generalization guarantee: w.p. $1 - \delta$, for all $\theta \in \Theta$,

 $\widehat{\mathcal{R}}_{\rho^2}(f_{\theta}) \geq \mathbb{E}_{\xi \sim P}\left[f_{\theta}(\xi)\right]$

More in the paper

See the paper and come to the (virtual) poster for details, refinements and extensions :-)

Our results also:

- Allow for bigger ρ
- Capture distribution shifts
- Provide an upper-bound on the robust risk
- Extend to entropy-regularized formulation