The Last-Iterate Convergence Rate of Optimistic Mirror Descent in Stochastic Variational Inequalities

Waïss Azizian, Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos

ICCOPT 2022

Variational Inequality

For $\mathcal{K} \subset \mathbb{R}^{d}, v: \mathcal{K} \rightarrow \mathbb{R}^{d}$,

$$
\begin{equation*}
\text { Find } x^{*} \in \mathcal{K} \text { such that }\left\langle v\left(x^{*}\right), x-x^{*}\right\rangle \geq 0 \text { for all } x \in \mathcal{K} \text {. } \tag{VI}
\end{equation*}
$$

Example (Minimization)

$$
\text { Karush-Kuhn-Tucker }(\mathrm{KKT}) \text { points of } \min _{x \in \mathcal{K}} f(x) \Longleftrightarrow(\mathrm{VI}) \text { with } v=\nabla f .
$$

Example (Saddle-point)

Stationary points of $\min _{x_{1} \in \mathcal{K}_{1}} \max _{x_{2} \in \mathcal{K}_{2}} \Phi\left(x_{1}, x_{2}\right) \Longleftrightarrow(\mathrm{VI})$ with $v=\binom{\nabla_{x_{1}} \Phi}{-\nabla_{x_{2}} \Phi}$

Example

In particular: games, adversarial training in ML

Classical methods in the unconstrained case $\mathcal{K}=\mathbb{R}^{d}$

Gradient method:

$$
X_{t+1}=X_{t}-\gamma_{t} V_{t} \quad V_{t}=v\left(X_{t}\right)
$$

\rightarrow Good convergence properties for large classes of VI , but fails on e.g., bilinear games Extragradient (Korpelevich, 1976):

$$
\begin{aligned}
X_{t+1 / 2} & =X_{t}-\gamma_{t} V_{t} & V_{t} & =v\left(X_{t}\right) \\
X_{t+1} & =X_{t}-\gamma_{t} V_{t+1 / 2} & V_{t+1 / 2} & =v\left(X_{t+1 / 2}\right)
\end{aligned}
$$

\rightarrow Better convergence properties, but requires two evaluations of v per iteration
Optimistic Gradient Method (Popov, 1980):

$$
\begin{aligned}
X_{t+1 / 2} & =X_{t}-\gamma_{t} V_{t-1 / 2} & V_{t-1 / 2} & =v\left(X_{t-1 / 2}\right) \\
X_{t+1} & =X_{t}-\gamma_{t} V_{t+1 / 2} & V_{t+1 / 2} & =v\left(X_{t+1 / 2}\right)
\end{aligned}
$$

Classical methods in the unconstrained case $\mathcal{K}=\mathbb{R}^{d}$

Gradient method:

$$
X_{t+1}=X_{t}-\gamma_{t} V_{t} \quad V_{t}=v\left(X_{t}\right)+\mathrm{err}
$$

\rightarrow Good convergence properties for large classes of VI , but fails on e.g., bilinear games Extragradient (Korpelevich, 1976):

$$
\begin{aligned}
X_{t+1 / 2} & =X_{t}-\gamma_{t} V_{t} \\
X_{t+1} & =X_{t}-\gamma_{t} V_{t+1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
V_{t} & =v\left(X_{t}\right)+\mathrm{err} . \\
V_{t+1 / 2} & =v\left(X_{t+1 / 2}\right)+\mathrm{err}
\end{aligned}
$$

\rightarrow Better convergence properties, but requires two evaluations of v per iteration
Optimistic Gradient Method (Popov, 1980):

$$
\begin{aligned}
X_{t+1 / 2} & =X_{t}-\gamma_{t} V_{t-1 / 2} \\
X_{t+1} & =X_{t}-\gamma_{t} V_{t+1 / 2}
\end{aligned}
$$

$$
V_{t-1 / 2}=v\left(X_{t-1 / 2}\right)+e r r
$$

$$
V_{t+1 / 2}=v\left(X_{t+1 / 2}\right)+\mathrm{err}
$$

+ Stochastic error err, e.g., in large scale ML

Bregman divergences

Constraint set: $\mathcal{K} \neq \mathbb{R}^{\text {d }}$, e.g., $\mathcal{K}=$ simplex in games
Bregman divergence: For $h: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ 1-strongly convex with dom $h=\mathcal{K}$

$$
D(p, x)=h(p)-h(x)-\langle\nabla h(x), p-x\rangle, \quad \text { for all } p \in \mathcal{K}, x \in \mathcal{K}
$$

Prox-mapping: $P: \mathcal{K} \times \mathbb{R}^{d} \rightarrow \mathcal{K}$

$$
P_{x}(y)=\underset{x^{\prime} \in \mathcal{K}}{\arg \min }\left\{\left\langle y, x-x^{\prime}\right\rangle+D\left(x^{\prime}, x\right)\right\} \quad \text { for all } x \in \mathcal{K}, y \in \mathcal{Y}
$$

Example: on $\mathcal{K}=[0,+\infty)$,

	$h(x)$	$D(p, x)$	$P_{x}(y)$
Euclidean	$\frac{x^{2}}{2}$	$\frac{(p-x)^{2}}{2}$	$(x+y)_{+}$
Entropy	$x \log x$	$p \log \frac{p}{x}+p-x$	$x e^{y}$
Tsallis entropy, $q>0$	$\frac{-x^{q}}{q(1-q)}$	$\frac{(1-q) x^{q}-p\left(x^{q-1}-p^{q-1}\right)}{q(1-q)}$	Explicit

Optimistic Mirror Descent:

$$
\begin{aligned}
X_{t+1 / 2} & =P_{X_{t}}\left(-\gamma_{t} V_{t-1 / 2}\right) & V_{t-1 / 2} & =v\left(X_{t-1 / 2}\right)+\mathrm{err} \\
X_{t+1} & =P_{X_{t}}\left(-\gamma_{t} V_{t+1 / 2}\right) & V_{t+1 / 2} & =v\left(X_{t+1 / 2}\right)+\mathrm{err}
\end{aligned}
$$

What happens across divergences?

Example

$$
v(x)=x \text { on } \mathcal{K}=[0,+\infty) \text { and } V_{t}=v\left(X_{t}\right)+\mathcal{N}\left(0, \sigma^{2} I_{d}\right)
$$

Convergence of Optimistic Mirror Descent/Mirror-Prox

Question:
How can we explain those differences in last-iterate convergence between divergences?

Existing results:

(VI)	Convergence	Setting	Deterministic	Stochastic
Monotone	Ergodic	Bregman	$O(1 / t)$	$O(1 / \sqrt{t})$ with $\gamma_{t} \propto 1 / \sqrt{t}$
Strongly Monotone	Last-iterate	Only Euclidean	Linear	$O(1 / t)$ with $\gamma_{t} \propto 1 / t$

(Nemirovski, 2004), (Juditsky et al., 2011, Gidel et al., 2019), (Hsieh et al., 2019)

The Bregman topology

- By the strong convexity of h,

$$
D(p, x)=h(p)-h(x)-\langle\nabla h(x), p-x\rangle \geq \frac{1}{2}\|p-x\|^{2} \quad \text { for all } p \in \mathcal{K}, x \in \mathcal{K} .
$$

Consequence: $D\left(p, x_{t}\right) \rightarrow 0 \Longrightarrow\left\|x_{t}-p\right\| \rightarrow 0$.

- Conversely consider,

$$
\mathcal{K}=\left\{x \in \mathbb{R}^{2}:\|x\|_{2} \leq 1\right\}, \quad h(x)=-\sqrt{1-\|x\|_{2}^{2}} .
$$

There exists $\left(x_{t}\right)_{t}$ s.t. $\left\|x_{t}-p\right\| \rightarrow 0$ but $D\left(p, x_{t}\right) \nrightarrow 0$
$D(p, x)$ for fixed p s.t. $\|p\|=1$

The topology of several standard divergences

Example

On $\mathcal{K}=[0,+\infty)$.

Our proposal: quantify the deficit of regularity w.r.t. ambient norm
Definition
The Legendre exponent of h at $p \in \mathcal{K}$ is the smallest $\beta \in[0,1)$ such, for some $\kappa \geq 0$ and for all x close enough to p,

$$
\frac{1}{2}\|p-x\|^{2} \leq D(p, x) \leq \frac{1}{2} k\|p-x\|^{2(1-\beta)}
$$

\rightarrow Local notion around p in \mathcal{K}

Example

On $\mathcal{K}=[0,+\infty)$.

	$p>0$ (interior)	$p=0$ (boundary)
Euclidean reg.	0	0
Entropy	0	$1 / 2$
Tsallis entropy $q \leq 2$	0	$1-q / 2$

Legendre exponent β

Assumptions and Iterate stability

Oracle signal: $\quad\left(U_{t}\right)_{t}$ zero-mean and with finite-variance,

$$
V_{t}=v\left(X_{t}\right)+U_{t}
$$

Lipschitz continuity:

$$
\left\|v\left(x^{\prime}\right)-v(x)\right\|_{*} \leq L\left\|x^{\prime}-x\right\| \quad \text { for all } x, x^{\prime} \in \mathcal{K} .
$$

Second-order sufficiency: there exists $\mu>0$ s.t.,

$$
\left\langle v(x), x-x^{*}\right\rangle \geq \mu\left\|x-x^{*}\right\|^{2} \quad \text { for all } x \text { close to } x^{*} .
$$

Proposition
Take a step-size of the form $\gamma_{t}=\gamma /\left(t+t_{0}\right)^{\eta}$ with $\eta \in(1 / 2,1]$ and $\gamma, t_{0}>0$ and fix any confidence level $\delta>0$,
For every neighborhood \mathcal{U} of x^{*}, if γ / t_{0} is small enough and X_{1} is close enough to x^{*}, then

$$
\mathcal{E}_{\mathcal{U}}=\left\{X_{t} \in \mathcal{U} \text { for all } t=1,2, \ldots\right\}
$$

happens with probability at least $1-\delta$.
Proof: using tools from Hsieh et al. (2019)

Last-iterate convergence

Legendre exponent: For all x close to x^{*},

$$
D\left(x^{*}, x\right) \leq \frac{1}{2} \kappa\left\|x^{*}-x\right\|^{2(1-\beta)}
$$

Theorem

If \mathcal{U} is small enough, with step-sizes of the form, $\gamma_{t}=\gamma /\left(t+t_{0}\right)^{\eta}, \mathbb{E}\left[D\left(x^{*}, X_{t}\right) \mid \mathcal{E}_{\mathcal{U}}\right]$ is bounded according to the following table and conditions:

Legendre exponent	Rate $(\eta=1)$	Rate $\left(\frac{1}{2}<\eta<1\right)$	Examples
$\beta=0$	$\mathcal{O}(1 / t)$	$\mathcal{O}\left(1 / t^{\eta}\right)$	Euclidean, Interior
Conditions:	γ large enough	-	
$\beta \in(0,1)$	$\mathcal{O}\left((\log t)^{-\frac{1-\beta}{\beta}}\right)$	$\mathcal{O}\left(t^{-\frac{(1-\eta)(1-\beta)}{\beta}}+t^{-\eta}\right)$	Entropy, Tsallis
Conditions:		γ small enough	

Best step-size schedule

Two regimes:

Legendre exponent	η^{*}	Rate
$\beta \in[0,1 / 2)$	$1-\beta$	$\mathcal{O}\left(t^{-(1-\beta)}\right)$
$\beta \in[1 / 2,1]$	$\approx 1 / 2$	$\mathcal{O}\left(t^{-\frac{1-\beta}{2 \beta}}\right)$

Rate exponent (ν)

Predicted rate $\mathcal{O}\left(1 / t^{\nu}\right)$ vs. β

Predicted rates vs. observed rates on the simple example

Example

$$
v(x)=x \text { on } \mathcal{K}=[0,+\infty)
$$

$$
D\left(x^{*}, X_{t}\right) \times t^{\nu} \text { with } \nu \text { predicted }
$$

Conclusion

Take-home message: Interplay between geometry, algorithm and convergence

- Introduce the Legendre exponent which characterizes the local geometry of the Bregman near a solution
- Characterize the convergence of the last-iterate near the solution
- Derive consequence for the tuning of the step-size

Perspectives: Can we refine the analysis of this interplay?

- Using the structures of the constraints?
- Deterministic setting?
- Other algorithms?

Preview of our current work in the deterministic setting

Deterministic setting: broader variety of behaviors!

1. General convergence result:

Legendre exponent	Rate	Examples
$\beta=0$	Linear	Euclidean, Interior
$\beta \in(0,1)$	$\mathcal{O}\left(t^{1 / \beta-1}\right)$	Entropies on the boundary

2. When x^{*} on the boundary of \mathcal{K} and linear constraints, finer guarantees on the convergence of active constraints.

Bibliography I

G. Gidel, R. A. Hemmat, M. Pezehski, R. L. Priol, G. Huang, S. Lacoste-Julien, and I. Mitliagkas. Negative momentum for improved game dynamics. In AISTATS '19: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019.
Y.-G. Hsieh, F. lutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochastic extra-gradient methods. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 6936-6946, 2019.
A. Juditsky, A. S. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011.
G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Èkonom. i Mat. Metody, 12:747-756, 1976.
A. S. Nemirovski. Prox-method with rate of convergence $O(1 / t)$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251, 2004.
L. D. Popov. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845-848, 1980.

