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GNNs, Invariance and Equivariance



Neural Networks on graphs

Goal: take graphs as inputs of neural network models

Dataset: (G1, y1), . . . , (GM, yM) with Gi graphs
Tasks:

• Classification/regression: one label per graph yi ∈ R

G graph y ∈ RGNN

Example: protein/molecule clasification.
• Node embedding: one label per nodes of the graph, yi ∈ Rn if Gi has n nodes.

G graph with n nodes y ∈ RnGNN

Example: community detection.
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No canonical representation of graphs
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Adjacency matrix: 0 1 0
1 0 1
0 1 0

 6=
0 0 1
0 0 1
1 1 0


Node features: ••

•

 6=
••
•


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Invariant and equivariant functions

For a permutation σ ∈ Sn, we define,

• for X ∈ Rn, (σ · X)i = Xσ−1(i)

• for G ∈ Rn×n, (σ · G)i1,i2 = Gσ−1(i1),σ−1(i2)

Two graphs with adjacency matrices G1,G2 are isomorphic i� ∃σ, G1 = σ · G2.

Definition
(k = 1 or k = 2)

A function f : Rn
k
→ R is invariant if f (σ · G) = f (G).

A function f : Rn
k
→ Rn is equivariant if f (σ · G) = σ · f (G).
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Practical GNNs and their limitations



A first example: Message passing GNN (MPGNN)

• MPGNN take as input a discrete graph G = (V, E) with n nodes and node features h0 ∈ Rn

• Defined inductively: given h` node features at layer `, h`+1 is obtained by:

for node i, h`+1i = f0

h`i , ∑
(j,i)∈E

f1
(
h`j
) ,

where f0 and f1 are learnable functions.

Prop: The message passing layer is equivariant.
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MPGNN cannot separate all non-isormophic graphs

An example of a problematic pair for MPGNN:

For any F MPGNN, F(G1) = F(G2).

Consequence for approximation: if (Fk)k sequence of MPGNN s.t.

Fk −→ F ,

then F(G1) = F(G2). ⇒ MPGNN cannot approximate all invariant/equivariant functions.
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Weisfeiler-Lehman test

We can precisely characterize which graphs can be separated by MPGNN.

• Weisfeiler-Lehman test: approximate isomorphism test for graphs,

WL(G1) 6= WL(G2) =⇒ G1 � G2 .

But there are G1 � G2 such that WL(G1) = WL(G2).
• Prop (Xu et al., 2018): There exists F MPGNN such that F(G1) 6= F(G2) i� WL(G1) 6= WL(G2).
• Consequence: If F approximated by MPGNNs, then WL(G1) = WL(G2) implies F(G1) = F(G2).
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Universality

Holy grail of GNN: A class of GNN which is universal, i.e. which can approximate all
invariant/equivariant continuous functions.

Existing approximation results for GNN: only universality results

• Relational pooling (Murphy et al., 2019) / Group averaging (Ravanbakhsh, 2020) but has
complexity O(n!).
• Tensor based architectures (Maron et al., 2018, 2019a) but tensors of size O(nn) needed (Maron

et al., 2019b; Keriven and Peyré, 2019; Chen et al., 2019).

Question: what happens for tractable classes of GNN, both equivariant and invariant, even though
their separation power is limited?
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Revisiting the Stone-Weierstrass
theorem for invariant and equivariant
functions



Stone-Weierstrass

Theorem(Stone-Weierstrass): X compact space, F ⊂ C(X,R) subalgebra, i.e. linear space, stable by
pointwise multiplication s.t. x 7→ 1 ∈ F .

Assume that F separates points,

∀x, x′ ∈ X, x 6= x′ =⇒ ∃f ∈ F , f (x) 6= f (x′) .

Then, for the uniform norm,
F = C(X,R)

But our classes of GNN do not separate points...
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Separating power

Separation (Timofte, 2005): Let F be a set of functions defined on X. Define the equivalence
relation ρ(F) on X is: for any x, x′ ∈ X,

(x, x′) ∈ ρ(F) ⇐⇒ ∀f ∈ F , f (x) = f (x′) .

Given two sets of functions F and E , ρ(F) ⊂ ρ(E) means that

F is "more separating" than E .

Proposition (Xu et al. (2018), revisited)

ρ(MPGNN) = ρ(WL)
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Vector-valued functions

Theorem (Timofte (2005), simplified)
X compact space, F ⊂ C(X,Rp) subalgebra which contains x 7→ (1, . . . , 1). Then,

F =
{
f ∈ C(X,Rp) : ρ (F) ⊆ ρ (f ) , ∀x ∈ X, f (x) ∈ F(x)

}
,

where F(x) = {f (x), f ∈ F},

under the assumption that

there exists S ⊂ C(X,R) a class of real-valued functions s.t.

SF ⊂ F

which is more separating that F : ρ (S) ⊂ ρ (F).

As a consequence, for most classes of real-valued invariant GNN,

GNN = {f ∈ C(X,R) : ρ(GNN) ⊂ ρ(f )} .

In particular, MPGNN = {f ∈ C(X,F) : ρ(WL) ⊂ ρ(f )} (Scarselli et al., 2009)
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Can it be applied to equivariant functions?

Take F ⊂ CE(X,Rn) set of equivariant functions, and S ⊂ C(X,R) a set of scalar functions satisfying
the assumptions of the theorem.

• SF ⊂ F implies that {x 7→ (f (x), . . . , f (x)) : f ∈ S} ⊂ F .
• Then, since the functions in F are equivariant, this means that the functions in S are invariant.
• But ρ (S) ⊂ ρ (F) would imply that the functions in F are invariant too!

⇒ The previous theorem cannot be applied to classes of equivariant functions!

Solution: Using equivariance, relax the original assumption ρ (S) ⊂ ρ (F), i.e.,

∀x, x′,
(
∃f ∈ F , f (x) 6= f (x′)

)
=⇒ ∃g ∈ S, g(x) 6= g(x′) ,

to ρ (S) ⊂ ρ (π ◦ F), i.e.,

∀x, x′,
(
∃f ∈ F , Orb(f (x)) 6= Orb(f (x′))

)
=⇒ ∃g ∈ S, g(x) 6= g(x′) ,

where π : Rn → Rn/Sn projection, and Orb(y) = {σ · y : σ ∈ Sn}.
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Equivariant approximation theorem

Theorem (A. & Lelarge, 2021)
X compact space, F ⊂ CE(X,Rp) subalgebra of equivariant functions which contains x 7→ (1, . . . , 1).
Then,

F =
{
f ∈ CE(X,Rp) : ρ (F) ⊆ ρ (f ) , ∀x ∈ X, f (x) ∈ F(x)

}
,

where F(x) = {f (x), f ∈ F},

under the assumption that there exists S ⊂ C(X,R) a class of real-valued functions s.t.

SF ⊂ F

which is more separating that F : ρ (S) ⊂ ρ (π ◦ F).
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Practical theorem for classes of GNNs

Corollary (A. & Lelarge, 2021)

Let X be a compact space, Let F0 ⊆
⋃∞
h=1 CE

(
X, (Rh)n

)
be a set of equivariant functions, stable by

concatenation, and consider,

F = {x 7→ (m(f (x)1), . . . ,m(f (x)n)) : f ∈ F0 ∩ C
(
X, (Rh)n

)
, m : Rh → R MLP, h ≥ 1}

Then the closure of F is,
F =

{
f ∈ CE(X,Rn) : ρ (F0) ⊆ ρ (f )

}
.

under the assumption that,

f ∈ F0 =⇒ x 7→
( n∑

i=1

f (x)i,
n∑
i=1

f (x)i, . . . ,
n∑
i=1

f (x)i

)
∈ F0 .
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Applications to GNNs

As a consequence, for most classes of invariant and equivariant GNN,

GNN = {f : ρ(GNN) ⊂ ρ(f )} .

In particular, we apply our results to tensor-based architectures from Maron et al. (2018, 2019a).

Bonus: combining these approximation results with graph theory,

• The 2-tensor architecture of Maron et al. (2019a) can approximate functions of the spectrum.
• Tensor architectures of order O(

√
n) are universal on planar graphs.
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Conclusion

Summary:

• A general framework to characterize the approximation capabilities of practical classes of
GNNs.
• See our paper for the details of the application to tensor architectures.

Perspectives:

• Extension to approximate non-continuous functions (for example, angles between
eigenvectors)
• Control the number of layers and the dimensions of the intermediate features.
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Thank You!
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Another problematic pair
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WL test
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Application to GNNs

We show that:

GNN = {f : ρ(GNN) ⊂ ρ(f )} .

In particular, we obtain the expressive power of Linear GNN (k-LGNN) and Folklore GNN (k-FGNN)
with tensors of order k:

• ρ((k+ 1)-WL) ( ρ(k-WL)
• ρ(2-LGNN) = ρ(2-WL)
• ρ(k-LGNN) ⊂ ρ(k-WL)

k-LGNN = {f ∈ C(X,F) : ρ(k-WL) ⊂ ρ(f )}
k-FGNN = {f ∈ C(X,F) : ρ((k+ 1)-WL) ⊂ ρ(f )}
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Better expressive power with FGNN

(Maron et al., 2019a) adapted the Folklore version of the Weisfeiler-Lehman test to propose the
folklore graph layer (FGL):

h`+1i→j = f0

(
h`i→j,

∑
k∈V

f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to MPGNN where messages
are associated with vertices.

FGNN: a FGNN is the composition of FGLs and a final invariant/equivariant reduction layer from Fn
2

to F or Fn.
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