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Contributions
Generalization bounds for WDRO
•Robust objective =⇒ exact upper-bound on the true risk w.h.p.
•No curse of dimensionality and for general classes of models
•Cover distribution shifts at testing

Distributionally Robust Optimization (DRO)

Empirical Risk Minimization (ERM) :
• θ model parameter, ξ uncertain variable (e.g., data point ξ = (x, y))
• fθ(ξ) the loss induced by a model parametrized by θ
• ξ1, . . . , ξn samples of the true distribution P

min
θ∈Θ
Eξ∼Pn[fθ(ξ)] =

1

n

n∑
i=1

fθ(ξi)

→Over-confident decisions and sensitive to distribution shifts.

Distributionally Robust Optimization (DRO) to mitigate these issues
min
θ∈Θ

sup
Q∈U(Pn)

Eξ∼Q[fθ(ξ)]

•U(Pn) neighborhood of Pn in probability space.

Wasserstein Distributionally Robust Optimization

A popular choice
U(Pn) = {Q ∈ P(Ξ) : W2(Pn,Q) ≤ ρ}

with the Wasserstein distance
W 2

2 (Q,Q′) := inf
π∈P(Ξ×Ξ),π1=Q,π2=Q′

E(ξ,ζ)∼π

[
1

2
‖ξ − ζ‖2

]
P(Ξ× Ξ) probability distributions on Ξ× Ξ, and π1 and π2 the marginals of π.

Wasserstein Distributionally Robust Optimization (WDRO)

min
θ∈Θ

R̂ρ2(fθ) := sup
Q∈P(Ξ):W2(Pn,Q)≤ρ

Eξ∼Q[fθ(ξ)] .

•Efficient numerical methods (Esfahani and Kuhn, 2018)
•Direct generalization guarantees:

if P satisfies W2(Pn,P) ≤ ρ, then
R̂ρ2(fθ)︸ ︷︷ ︸

can compute & optimize

≥ Eξ∼P[fθ(ξ)]︸ ︷︷ ︸
cannot access

.

→But it requires ρ ∝ 1/n1/d where ξ ∈ Rd (Fournier and Guillin, 2015)
→Not optimal: ρ ∝ 1/

√
n suffices asymptotically (Blanchet et al., 2022), in

particular cases (Shafieezadeh-Abadeh et al., 2019) or with error terms
Gao (2022).

Generalization Guarantees

Setting
• (θ, ξ) ∈ Θ× Ξ 7→ fθ(ξ) C2 with Θ and Ξ ⊂ Rd compact
•P supported on the interior of Ξ, and for all θ, P(∇ξ fθ(ξ) = 0) < 1

Theorem 1
For ρ small enough, for δ ∈ (0, 1) and n ≥ 1, if

ρ ≥ O


√√√√log 1/δ

n


Generalization guarantee: w.p. 1− δ, for all θ ∈ Θ,

R̂ρ2(fθ) ≥ Eξ∼P [fθ(ξ)]

Distribution shifts: w.p. 1− δ, for all θ ∈ Θ and Q s.t.

W 2
2 (P,Q) ≤ ρ

ρ−O


√√√√log 1/δ

n


 it holds R̂ρ2(fθ) ≥ Eξ∼Q [fθ(ξ)]

Additional assumptions
• fθ grows quadratically near its maximums uniformly in θ ∈ Θ.
• {fθ : θ ∈ Θ} is relatively compact for D(f , g) := ‖f − g‖∞ +DH(arg max f , arg max g) .

Theorem 2
The conclusions of Theorem 2 hold for all ρ satisfying

O


√√√√log 1/δ

n

 ≤ ρ ≤ ρc
2
−O


√√√√log 1/δ

n


where

ρ2
c = inf

θ∈Θ
Eξ∼P

[
1
2d(ξ, arg max fθ)

2
]

The critical radius ρc :
If ρ� ρc , there is some θ ∈ Θ s.t.

ρ2 � Eξ∼P

[
1
2d(ξ, arg max fθ)

2
]

and so there exists Q supported on arg max fθ that satisfies W2(P,Q) � ρ.
Hence, the RHS of (Distribution shifts) is equal to maxΞ fθ.

Idea of proof

Strong duality:

R̂ρ2(fθ) = inf
λ≥0

λρ2 + Eξ∼Pn

sup
ζ∈Ξ

{
fθ(ζ)− λ

2‖ζ − ξ‖
2
2

}
Concentration:

λ−1Eξ∼Pn

sup
ζ∈Ξ

{
fθ(ζ)− λ

2‖ζ − ξ‖
2
2

} concentrates with error O

1

λ

√√√√log 1/δ

n


Bound on dual multiplier:

λ bounded away from 0, as ∝ 1/ρ, for admissible ρ.

Illustration: Logistic Regression
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Loss on train set EPn[fθ]
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Loss on perturbed test set EQ[fθ]
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Smoothed histogram of losses with the WDRO predictor

Robust loss on train set R̂ρ2(fθ)
Loss on test set EP[fθ]
Loss on perturbed test set EQ[fθ]

Extension: entropy-regularized WDRO

Inspired by OT, regularized WDRO (Wang et al., Azizian et al., 2023)
sup

{
Eξ∼π2 [f (ξ)]− εKL (π |πnσ) : π, π1 = Pn, E(ξ,ζ)∼π

[
1
2‖ξ − ζ‖

2
]
≤ ρ2

}
= inf

λ≥0
λρ2 + Eξ∼Pn

[
log

(
Eζ∼πσ(·|ξ)

[
e
fθ(ζ)−λ‖ξ−ζ‖

2
2/2

ε

])]

with prior πnσ ∝ Pn( dξ)e−
‖ξ−ζ‖22
2σ2 dζ

→ Similar results as Theorem 1 hold for regularized risks.
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