Exact Generalization Guarantees for Wasserstein Distributionally Robust Models

Contributions

Generalization bounds for WDRO

- Robust objective \implies exact upper-bound on the true risk w.h.p.
- No curse of dimensionality and for general classes of models
- Cover distribution shifts at testing

Distributionally Robust Optimization (DRO)

Empirical Risk Minimization (ERM):

- θ model parameter, ξ uncertain variable (e.g., data point $\xi = (x, y)$)
- $f_{\theta}(\xi)$ the loss induced by a model parametrized by θ
- ξ_1, \ldots, ξ_n samples of the true distribution P

$$\min_{\theta \in \Theta} \mathbb{E}_{\xi \sim \mathsf{P}_{\mathsf{n}}}[f_{\theta}(\xi)] = \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(\xi_{i})$$

 \rightarrow Over-confident decisions and sensitive to distribution shifts.

Distributionally Robust Optimization (DRO) to mitigate these issues

 $\min_{\theta \in \Theta} \sup_{Q \in \mathcal{U}(\mathsf{P}_n)} \mathbb{E}_{\xi \sim Q}[f_{\theta}(\xi)]$

• $\mathcal{U}(\mathsf{P}_{\mathsf{n}})$ neighborhood of P_{n} in probability space.

Wasserstein Distributionally Robust Optimization

A popular choice

 $\mathcal{U}(\mathsf{P}_{\mathsf{n}}) = \{ \mathsf{Q} \in \mathcal{P}(\Xi) : W_2(\mathsf{P}_{\mathsf{n}}, \mathsf{Q}) \le \rho \}$

with the Wasserstein distance

 $W_2^2(\mathsf{Q},\mathsf{Q}') \coloneqq \inf_{\pi \in \mathcal{P}(\Xi \times \Xi), \pi_1 = \mathsf{Q}, \pi_2 = \mathsf{Q}'} \mathbb{E}_{(\xi,\zeta) \sim \pi} \left[\frac{1}{2} \|\xi - \zeta\|^2 \right]$ $\mathcal{P}(\Xi \times \Xi)$ probability distributions on $\Xi \times \Xi$, and π_1 and π_2 the marginals of π .

Wasserstein Distributionally Robust Optimization (WDRO)

$$\min_{\theta \in \Theta} \widehat{\mathcal{R}}_{\rho^2}(f_{\theta}) := \sup_{\mathsf{Q} \in \mathcal{P}(\Xi) : W_2(\mathsf{P}_n,\mathsf{Q}) \le \rho} \mathbb{E}_{\xi \sim \mathsf{Q}}[f_{\theta}(\xi)].$$

 \geq

- Efficient numerical methods (Esfahani and Kuhn, 2018)
- Direct generalization guarantees:

if P satisfies $W_2(P_n, P) \leq \rho$, then

 $\mathbb{E}_{\xi\sim\mathsf{P}}[f_{ heta}(\xi)]$. cannot access

can compute & optimize

- \rightarrow But it requires $\rho \propto 1/n^{1/d}$ where $\xi \in \mathbb{R}^d$ (Fournier and Guillin, 2015)
- \rightarrow Not optimal: $\rho \propto 1/\sqrt{n}$ suffices asymptotically (Blanchet et al., 2022), in particular cases (Shafieezadeh-Abadeh et al., 2019) or with error terms Gao (2022).

Waïss Azizian^{1,2}, Franck lutzeler^{1,2}, Jérôme Malick^{1,2,3}

¹ Univ. Grenoble Alpes, ² LJK, ³ CNRS,

Generalization Guarantees

Setting

- $(\theta, \xi) \in \Theta \times \Xi \mapsto f_{\theta}(\xi) C^2$ with Θ and $\Xi \subset \mathbb{R}^d$ compact • P supported on the interior of Ξ , and for all θ , $P(\nabla_{\xi} f_{\theta}(\xi) = 0) < 1$

Theorem 1

For ρ small enough, for $\delta \in (0, 1)$ and $n \ge 1$, if

Generalization guarantee: w.p. $1 - \delta$, for all $\theta \in \Theta$, $\widehat{\mathcal{R}}_{
ho^2}(f_ heta) \geq \mathbb{E}_{\xi \sim \mathsf{P}}\left[f_ heta(\xi)
ight]$ **Distribution shifts:** w.p. $1 - \delta$, for all $\theta \in \Theta$ and Q s.t. $W_2^2(\mathsf{P},\mathsf{Q}) \le \rho \left(\rho - \mathcal{O}\left(\sqrt{\frac{\log 1/\delta}{n}} \right) \right) \quad \text{it holds} \quad \widehat{\mathcal{R}}_{\rho^2}(f_{\theta}) \ge \mathbb{E}_{\xi \sim \mathsf{Q}}\left[f_{\theta}(\xi) \right]$

Additional assumptions

- f_{θ} grows quadratically near its maximums uniformly in $\theta \in \Theta$. • { $f_{\theta} : \theta \in \Theta$ } is relatively compact for $D(f, g) := ||f - g||_{\infty} + D_{H}(\arg\max f, \arg\max g)$.

Theorem 2

The conclusions of Theorem 2 hold for all ρ satisfying $\mathcal{O}\left(\sqrt{\frac{\log 1/\delta}{n}}\right) \le \rho \le \frac{\rho_c}{2} - \mathcal{O}\left(\sqrt{\frac{\log 1/\delta}{n}}\right)$

where

$ho_c^2 = \inf_{ heta \in \Theta} \mathbb{E}_{\xi \sim \mathsf{P}} \left[\frac{1}{2} d(\xi, \operatorname{arg\,max} f_{\theta})^2 \right]$

The critical radius ρ_c : If $\rho \gg \rho_c$, there is some $\theta \in \Theta$ s.t. $\rho^2 \gg \mathbb{E}_{\xi \sim \mathsf{P}}\left[\frac{1}{2}d(\xi, \arg\max f_{\theta})^2\right]$ and so there exists Q supported on arg max f_{θ} that satisfies $W_2(P, Q) \ll \rho$. Hence, the RHS of (*Distribution shifts*) is equal to $\max_{\Xi} f_{\theta}$.

Idea of proof

Strong duality:

$$\widehat{\mathcal{R}}_{\rho^{2}}(f_{\theta}) = \inf_{\lambda \geq 0} \lambda \rho^{2} + \mathbb{E}_{\xi \sim \mathsf{P}_{\mathsf{n}}} \left[\sup_{\zeta \in \Xi} \left\{ f_{\theta}(\zeta) - \frac{\lambda}{2} \| \zeta - \xi \|_{2}^{2} \right\} \right]$$

:
$$f_{\theta}(\zeta) - \frac{\lambda}{2} \| \zeta - \xi \|_{2}^{2} \right\} \text{ concentrates with error } \mathcal{O}\left(\frac{1}{\lambda} \sqrt{\frac{\log 1/\delta}{n}} \right)$$

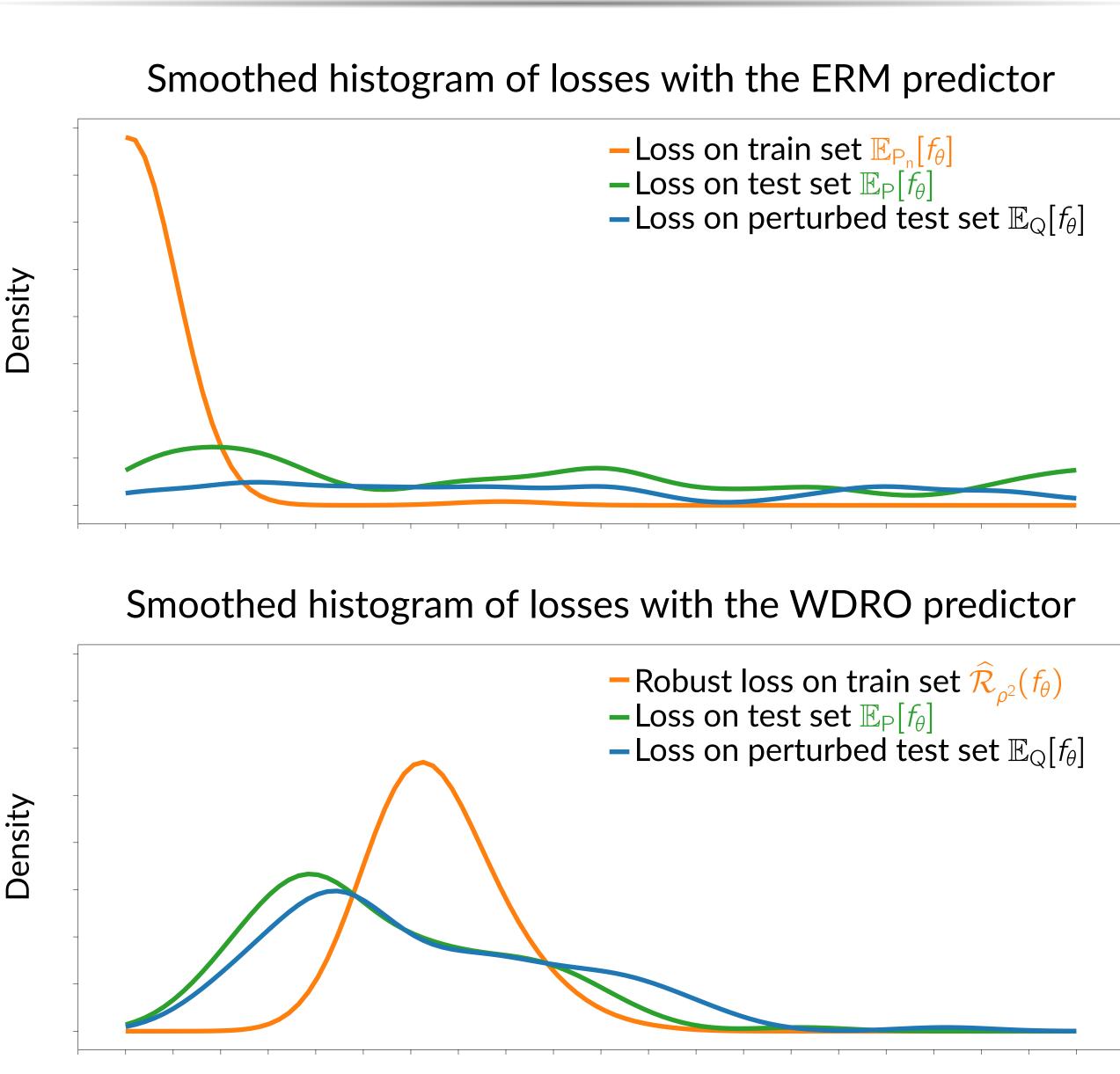
Concentration:

 $\lambda^{-1} \mathbb{E}_{\xi \sim \mathsf{P}_{\mathsf{n}}} \left| \sup_{\zeta \in \Xi} \right|$

Bound on dual multiplier:

 λ bounded away from 0, as $\propto 1/\rho$, for admissible ρ .

Illustration: Logistic Regression



Extension: entropy-regularized WDRO

Inspired by OT, regularized WDRO (Wang et al., Azizian et al., 2023) $\sup \left\{ \mathbb{E}_{\xi \sim \pi_2} \left[f(\xi) \right] - \varepsilon \operatorname{KL} \left(\pi \left| \pi_{\sigma}^n \right) : \pi, \ \pi_1 = \mathsf{P}_{\mathsf{n}}, \ \mathbb{E}_{(\xi,\zeta) \sim \pi} \left[\frac{1}{2} \| \xi - \zeta \|^2 \right] \le \rho^2 \right\}$ $= \inf_{\lambda \ge 0} \lambda \rho^2 + \mathbb{E}_{\xi \sim \mathsf{P}_{\mathsf{n}}} \left[\log \left(\mathbb{E}_{\zeta \sim \pi_{\sigma}(\cdot|\xi)} \left[e^{\frac{f_{\theta}(\zeta) - \lambda \|\xi - \zeta\|_2^2/2}{\varepsilon}} \right] \right) \right]$ with prior $\pi_{\sigma}^n \propto \mathsf{P}_{\mathsf{n}}(\,d\xi)e^{-rac{\|\xi-\zeta\|_2^2}{2\sigma^2}}\,d\zeta$

- bust optimization. ESAIM: COCV, 2023.
- bust estimation. *Biometrika*, 2022.
- wasserstein metric. *Mathematical Programming*, 2018.

- portation. JMLR, 2019.

- Loss on train set $\mathbb{E}_{P_n}[f_{\theta}]$ - Loss on test set $\mathbb{E}_{P}[f_{\theta}]$ - Loss on perturbed test set $\mathbb{E}_{Q}[f_{\theta}]$

Loss

 \rightarrow Similar results as Theorem 1 hold for regularized risks.

References

W. Azizian, F. lutzeler, and J. Malick. Exact generalization guarantees for (regularized)

W. Azizian, F. lutzeler, and J. Malick. Regularization for Wasserstein distributionally ro-

J. Blanchet, K. Murthy, and N. Si. Confidence regions in wasserstein distributionally ro-

P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the

N. Fournier and A. Guillin. On the rate of convergence in wasserstein distance of the empirical measure. *Probability Theory and Related Fields*, 2015.

R. Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the curse of dimensionality. *Operations Research*, 2022.

S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. Regularization via Mass Trans-

J. Wang, R. Gao, and Y. Xie. Sinkhorn distributionally robust optimization. *arXiv* 2021.

Wasserstein distributionally robust models. *arXiv* 2023.